• Title/Summary/Keyword: Fiber Bragg Grating Filter

Search Result 69, Processing Time 0.02 seconds

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

FBG Sensor Signal Processing System using SLD Tunable Light Source and Etalon Filter (SLD동조 광원과 에탈론 필터를 이용한 FBG 센서 신호처리 시스템)

  • Chung, Chul;Lee, Ho-Joon;Kim, Ki-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.39-44
    • /
    • 2004
  • Fiber Bragg grating sensors are fabricated by core index modulation using UV laser and phasemask. Bragg wavelength of the grating is changed by the external strain. In this paper, a signal processing system of fiber Bragg grating sensor has studied in the optical wavelength domain. The system is based on the sweep semiconductor light source that consists of SLD, F-P tunable filter and etalon filter. The hysteresis effects of PZT in the F-P tunable filter are compensated. The long term measurement stability is obtained by controlling the temperature of F-P tunable filter and the SLD. We compare the strain data from fiber Bragg grating sensor and that from strain gauge at concrete hume pipe. We also get very good results for the long gauge displacement using fiber Bragg grating sensor which are identical to the data with short gauge length ordinary displacement sensor.

Absolute Strain Measurement Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 절대 변형률 측정)

  • ;Lou-shuang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.416-420
    • /
    • 2002
  • This Paper describes a matched-filter type strain sensor system using optical fiber Bragg grating (FBG) sensor. Matched-filter type uses another wavelength-matched FBG filter to track wavelength shift in the FBG sensor. Filter FBG is attached on a fiber stretcher and stretched by PZT actuator. To overcome the nonlinearity and hysteresis of the PZT actuator that degrades system accuracy, a string resonator which can measure an absolute strain is employed. And the effect of vibration modes on string resonator is investigated particularly regarding its sensitivity and stability.

  • PDF

Polarization-Diversity-Loop-Configuration-Based Fiber Filter Realizing Inline Conversion Between Transmission and Reflection Spectra of Fiber Bragg Grating (광섬유 브래그 격자의 투과 및 반사 스펙트럼간 동일 선로상 변환이 가능한 편광상이 배치구조 기반 광섬유 필터)

  • Jang, Wook;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • By incorporating a polarization-diversity loop configuration (PDLC), we have demonstrated inline conversion between transmission and reflection spectra of a fiber Bragg grating (FBG) without reconfiguration of the fiber filter structure. The proposed apparatus consists of a polarization beam splitter, an FBG, and two quarter-wave plates (QWP's). The inline conversion operation between transmission and reflection spectra of the FBG was performed by proper adjustment of QWP's within the proposed filter. The band rejection ratio and side-mode suppression ratio in transmission and reflection modes of the fabricated filter were measured as ~17.0[dB] and ~16.4[dB], respectively.

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF

A study on tunable Add/Drop filter using Fiber Bragg Gratings (광섬유 bragg grating을 이용한 가변형 add/drop 필터에 관한 연구)

  • 박무윤;박광노;이경식;원용협;이상배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.15-24
    • /
    • 1997
  • We propose a tunable add/drop filter in a form of an all-fiber mach-zehnder interferometer iwth one bragg grating at each arm. This device can be tuned by inducing a strain in the bragg grating. We also theoretically analyze the outut characteristics of the tunable add/drop filter. As a result of simulation, we know that the proposed tunable add/drop filter works well. When 2*10$^{-3}$ of strain is induced, the reflected spectrum shifts about 3nm. And its reflected spectral width is about 0.3nm. In this case roughly 5 channels can be tuned, assuming the channel spacing is 0.3nm. When the pathlengths of the both arms are not the same, the transmissivities at the add and output ports and the reflectivity at the tap port varies sinusoidally with the pthlength difference. To maintain the transmissivities above 90% in the wavelength tuning range of 20nm the pathlength difference less than 16.mu.m is required.

  • PDF

High-Temperature Characteristics of Tunable All-optical Filter Using Fiber Bragg Grating (FBG를 이용한 파장가변 형 전광필터의 고온 특성)

  • Son, Yong-Hwan;Won, Yong-Yuk;Han, Sang-Kook
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.483-484
    • /
    • 2008
  • In this paper, we present high-temperature characteristics of tunable all-optic filter using fiber Bragg grating(FBG), including peak reflectivity, FWHM bandwidth, refractive index change along temperature variation. The characteristics of a FBG tunable filter with refractive index change is affected by its thermal stability.

  • PDF

Linear interrogation of fiber Bragg grating sensor array using time-delayed quadrature sampling technique (시간지연 샘플링을 이용한 광섬유 격자 센서어레이의 선형 복조)

  • 김종섭;송민호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • A fiber laser of which wavelength was scanned by an intra-cavity FP (Fabry-Perot) filter was used to interrogate a fiber Bragg grating strain sensor array. We calculated the wavelength variation of the fiber laser using quadrature signal processing with an unbalanced M/Z (Mach-Zehnder) interferometer and time-delayed sampling technique. The calculated wavelengths are mapped to corresponding temporal reflection peaks from the sensor array, which enables more accurate and stable interrogation without the problems caused by the FP filter's nonlinear characteristics. Wavelength resolution of ∼20 pm was obtained in our experimental setup, which could have been greatly enhanced with faster phase modulation.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

Optical performance monitoring in 16CH WDM system, using FFP-TF (FFP-TF를 활용한 OPM의 16CH WDM시스템 광 성능 모니터링)

  • 이동선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.657-662
    • /
    • 2003
  • The OPM(optical performance monitoring module) is needed in order to monitor optical performance. the most importance of OPM is to measure the wavelength of optical signal. In the past time, it was very difficult to get the wavelength value because they used pilot tone. Since then, using AWG(arrayed waveguide grating) and AOTF(acousto optic tuneable filter), the wavelength and the transmission qualify for multi channel signal have been monitored. In this paper, we chose the fiber fabry-perot wavelength variable filter which be evaluated for optical resolution ability to excellent, so that FBG(fiber bragg grating) was used for setting reference wavelength because chose a wavelength variable filter.