• Title/Summary/Keyword: Fexofenadine

Search Result 15, Processing Time 0.018 seconds

Effect of Korean Red Ginseng extracts on drug-drug interactions

  • Kim, Se-Jin;Choi, Seungmok;Kim, Minsoo;Park, Changmin;Kim, Gyu-Lee;Lee, Si-On;Kang, Wonku;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.370-378
    • /
    • 2018
  • Background: Ginseng has been the subject of many experimental and clinical studies to uncover the diverse biological activities of its constituent compounds. It is a traditional medicine that has been used for its immunostimulatory, antithrombotic, antioxidative, anti-inflammatory, and anticancer effects. Ginseng may interact with concomitant medications and alter metabolism and/or drug transport, which may alter the known efficacy and safety of a drug; thus, the role of ginseng may be controversial when taken with other medications. Methods: We extensively assessed the effects of Korean Red Ginseng (KRG) in rats on the expression of enzymes responsible for drug metabolism [cytochrome p450 (CYP)] and transporters [multiple drug resistance (MDR) and organic anion transporter (OAT)] in vitro and on the pharmacokinetics of two probe drugs, midazolam and fexofenadine, after a 2-wk repeated administration of KRG at different doses. Results: The results showed that 30 mg/kg KRG significantly increased the expression level of CYP3A11 protein in the liver and 100 mg/kg KRG increased both the mRNA and protein expression of OAT1 in the kidney. Additionally, KRG significantly increased the mRNA and protein expression of OAT1, OAT3, and MDR1 in the liver. Although there were no significant changes in the metabolism of midazolam to its major metabolite, 1'-hydroxymidazolam, KRG significantly decreased the systemic exposure of fexofenadine in a dose-dependent manner. Conclusion: Because KRG is used as a health supplement, there is a risk of KRG overdose; thus, a clinical trial of high doses would be useful. The use of KRG in combination with P-glycoprotein substrate drugs should also be carefully monitored.

Analysis of Potential Active Ingredients and Treatment Mechanism of Atractylodes Lancea(Thunb.) D.C and Magnolia Officinalis Rehder et Wilson for Dermatitis Accompanied by Pruritus Using Network Pharmacology (네트워크 약리학을 이용한 소양증을 동반한 피부 염증에 대한 창출(蒼朮) 및 후박(厚朴)의 잠재적 치료기전 탐색)

  • YeEun Hong;GwangYeel Seo;Byunghyun Kim;Kyuseok Kim;Haejeong Nam;YoonBum Kim
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.4
    • /
    • pp.30-50
    • /
    • 2023
  • Objectives : To investigate the active compounds and therapeutic mechanisms of Atractylodes Lancea(Thunb.) D.C. and Magnolia Officinalis Rehder et Wilson in the treatment of dermatitis accompanied by pruritus, as well as their potential to complement or replace standard drugs. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of research target herbs. Then we explore pathway/terms of the common target proteins among research target herbs, fexofenadine and disease. Results : We selected 9 active compounds are selected from Atractylodes lancea and identified 231 target proteins. Among them, 74 proteins are associated with inflammatory skin diseases that cause pruritus. These proteins are involved in various pathways including, 'Nitric-oxide synthase regulator activity', 'Hydroperoxy icosatetraenoate dehydratase activity, Aromatase activity', 'RNA-directed DNA polymerase activity', 'Arachidonic acid metabolism', 'Peptide hormone processing', 'Chemokine binding' and 'Sterol biosynthetic process'. Additionally, coregenes are involved in 'IL-17 signaling pathway'. Similarly, we selected 2 active compounds from Magnolia officinalis and identified 133 target proteins. Among them, 33 proteins are related to inflammatory skin diseases that cause pruritus. These proteins are primarily involved in 'Vascular associated smooth muscle cell proliferation' and 'Arachidonic acid metabolism'. There is no significant difference between the pathways in which coregenes are involved. Conclusions : It is expected that Atractylodes Lancea will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied pruritus through suppressing inflammation and protecting skin barrier. Meanwhile, it is expected that Magnolia Officinalis will only be able to show indirect anti-inflammation effects. Therefore, Atractylodes Lancea and fexofenadine are believed to complement each other, whereas Magnolia Officialinalis is expected to provide supplementary support on skin disease.

Analysis of Micropollutants and Their Metabolites in the Hwapo Wetland through Target, Suspect, and Non-target Screening Using LC-HRMS (LC-HRMS 기반의 표적, 추정 및 비표적 분석기법을 이용한 화포습지 내 미량오염물질 및 대사체 분석)

  • Hwang, Sumin;Jeon, Junho
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.304-315
    • /
    • 2018
  • Located in Gimhae, Hwapo is the biggest riverine wetland in the province of Gyeongsangsam-do, Korea, and is a major habitat for various species. However, it is suspected that various pollutants enter the wetlands from agricultural and industrial areas. This study identifies major organic pollutants in this wetland and their sources using high performance liquid chromatography-high resolution mass spectrometry during one summer season. Forty-five substances were selected for quantitative analysis using target screening, and other non-selected compounds were screened using suspect and non-target screening methods. The results were that 21 and 17 targeted substances were detected in July and August, respectively. Major pollutants in July and August were oxadiazon (July: 17-220 ng/L, August: 66-460 ng/L), carbendazim (July: 10-110 ng/L, August: 64-520 ng/L), caffeine (July: 33-1,100 ng/L, August: 56-580 ng/L), and niflumic acid (July: 23-75 ng/L, August: 42-290 ng/L). Sampling sites S4 in July and S2 in August were the major inflow points. Ten substances (tricyclazole, hexaconazole, diuron, fexofenadine, irbesartan, simetryn, cimetidine, valsartan, tebuconazole, and benzotriazole) and four metabolites (valsartan acid, azoxystrobin acid, TEB_M324c, and 2-aminobenzimidazole) were tentatively identified through suspect and non-target screening, respectively.

Simplified HPLC Method for the Determination of Pseudoephedrine Hydrochloride from Allegra D Tablet

  • Park, Moon-Hee;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.123-126
    • /
    • 2007
  • A sensitive, simple and highly selective liquid chromatography method of determination for extraction of pseudoephedrine hydrochloride from Allegra D tablet was developed. The chief benefit of the present method is the minimal sample preparation, as the procedure is only filtering through pore syringe filter. Two drugs (pseudoephedrine hydrochloride, fexofenadine) were separated on a C$_{18}$ column and analyzed by high performance liquid chromatography (HPLC). The method had a chromatographic run time of 8.0 min. 1 ml of pseudoephedrine hydrochloride solution (1 mg/ml) was filtered through 0.22 um pore syringe filter. 50 ul of filtering solution was injected to HPLC pump and we knew the retention time (1.85 min) of separating of pseudoephedrine hydrochloride using UV detector at 280 nm. We used C$_{18}$ column (4.6 mm${\times}$250 mm), mobile phase solution (<0.05 mol/L NaH$_2$PO$_4$, 2 ml/L H$_3$PO$_4$>/CH$_3$CN / sodium dodesyl sulfate = 60 ml / 40 ml / 1 g). We separated psedoephedrine hydrochloride at run time of 1.85 min from Allegra D tablet solution (1 mg/ml) filtered through 0.22 um pore syringe filter using UV detector at 280 nm. Flow rate was set at 1.0 ml/min and the column temperature was set at 40$^{\circ}C$. Psedoephedrine hydrochloride solution (1 mg/ml) separated from Allegra D tablet was filtered through 0.22 um pore syringe filter and injected 50 ul. We confirmed the peak of psedoephedrine hydrochloride at same retention time and the separating solution was freeze-dried. In conclusion, A simple isocratic reverse-phase HPLC method has been developed that provides excellent separation of pseudoephedrine from Allegra D tablet.