• Title/Summary/Keyword: Fetal calvaria

Search Result 13, Processing Time 0.02 seconds

The biologic effects of magnoliae cortex extract and safflower seed (Carthamus tinctorius $Linn{\acute{e}}$) extract mixture on PDL cells and osteoblasts (후박 및 홍화종자 추출혼합물이 치주인대세포 및 골아세포의 활성도 및 백서의 두개골재생에 미치는 영향)

  • Shin, Seung-Yun;Lee, Yong-Moo;Ku, Young;Bae, Ki-Hwan;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.545-559
    • /
    • 1998
  • Magnoliae cortex has been used as a drug for treatment of fractures in Chinese medicine and safflower(Carthamus tinctorius $Linn{\acute{e}}$) has been traditionally used for treatment of blood stasis. The purpose of present study was to examine the biologic effects of magnoliae cortex extract and safflower extract mixture(MSM) on human periodontal ligament cells and fetal rat calvarial osteoblasts and on healing of rat calvarial defects. The ethanolic extracts of magnoliae cortex(MCE), safflower seed(SSE), Zea May L(ZML) were prepared as positive control group. MSM mixed to the ratios of 1 : 1, 1 : 2, 1 : 5 and 1 : 10 were used as test group. The effects of each agents on the growth and survival, ALPase activity, cell proliferation and tissue regenerative effect of each extracts was evaluated by histomorphometric measuring of newly formed bone on the 8 mm defect in rat calvaria after oral administration of 2 ratio groups(1 : 5 and 1 : 10) at 3 different doses (0.1, 0.25 and 0.5g/kg per day). MSM stimulated the growth and survival rate of osteoblasts and PDL cells more than any other agents. The growth and survival rate were increased as the proportion of safflower seed extract was increased. MCE, SSE, ZML stimulated the ALPase activity of osteoblast and PDL cell in comparison to the negative control group. But all groups of MSM regardless of ratio of safflower seed extract stimulated the ALPase activity than any other agent. The ALPase activity was also increased as the proportion of safflower seed extract was increased. Although MCE, SSE, ZML stimulated the proliferation of osteoblasts. 1 : 5 and 1 : 10 ratio MSM showed significant increase in stimulation of proliferation of osteoblasts. No agent significantly increased proliferation of PDL cells. Significant new bone formation were seen where 1 : 5 ratio, 0.5g/kg group and 1 : 10 ratio, 0.25, 0.5g/kg groups were used. These results show that magnoliae cortex extract and safflower seed extract mixture can potentially increase bone regeneration ability.

  • PDF

EFFECTS OF EXTRACTS OF DRYNARIAE RHIZOMA ON THE CHARACTERISTICS OF RAT CALARIA AND BONE MARROW CELLS (Drynariae Rhizoma추출물이 백서 두개관세포 및 골수세포 성상에 미치는 영향)

  • Lim, Kyung-Seok;Kwon, Young-Hyuk;Park, Joon-Bong;Kim, Sung-Jin;Choung, Se-Young;Park, Kun-Koo
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.291-310
    • /
    • 1998
  • This study was performed to evaluate the effects of extracts of Drynariae Rhizoma on the characteristics of rat calvaria cells(RCV) and bone marrow cells(RBM) which have the important role on the bone formation in vitro. Drynariae Rhizoma has been known as the useful herbal medicament for treatment of the wound healing including regeneration of bone fracture, and also has been used to treat the periodontal lesions, tooth mobility, gingival bleeding and pus discharge via sulcus in Oriental Medicine. In control group, the cells were cultured alone with Dulbeco's Modified Eagle's Medium contained with 10% fetal bovine serum, 100U/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. In experimental group, extracts of Drynariae Rhizoma(0.1, 1, 5, 10, $50{\mu}g/ml$) were added into the above culture condition. And then each group was characterized by examing the cell proliferation at 1, 3, 7, 14, 21, 30th day, the amount of total protein synthesis and alkaline phosphatase activity of RCV at 2,4th day and those of RBM at 3, 6th day. And also, the calcified nodule of RCV was examed at 3, 5th day in three goup, control, experimental, culture with the PDGF group. The results were as follow ; 1. Both RCV and RBM cells in Drynariae Rhizoma-treated experimental group proliferated more rapidly than nontreated control group. The experimental group below $5{\mu}g/ml$ Drynariae Rhizoma-treated showed more prominent cell proliferation from the 7th day to the 21st day than the control group and above $10\;{\mu}g/ml$ treated group in RCV. 2. Amount of total protein synthesis was more increased in Drynariae Rhizomatreated group than in control group. In $5{\mu}g/ml$ Drynariae Rhizoma-treated group showed most prominent protein synthesis of the any other exrperimental group and control group. 3. Alkaline phosphatase activity also more increased in Drynariae Rhizomatreated group than control group. 4. Mineralized nodules in Drynariae Rhizoma-treated group were more than not in control group but also in PDGF-treated group. From the above results, Drynariae Rhizoma appeared to enhanced the proliferation, protein synthesis, alkaline phosphatase activity and cellular ability of mineralized nodule formation than PDGF. So that, we conclude that Drynariae Rhizoma enhances the activities of bone cells which have the important role on the periodontal regeneration and optimal application of Drynariae Rhizoma was thought to be useful as the means in bone regeneration.

  • PDF

THE ASPECT OF PROLIFERATION AND BONE NODULE FORMATION IN OSTEOBLAST-LIKE CELLS DERIVED FROM FETAL RAT CALVARIA IN VITRO (백서 태자 두 개관에서 유래된 조골세포의 증식 및 골결절 형성양상)

  • Kim, Shi-Hyeong;Nam, Soon-Hyeun;Shin, Hong-In
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 1997
  • The purpose of this study was to investigate the aspects of proliferation and bone nodule formation of osteogenic precursor cells. To determine the effects of ascorbic acid and dexamethasone upon capacity of osteoblast proliferation and bone nodule formation, cells were maintained in the presence of one or some of these additives for up to 30 days. Group I culture was maintained in standard medium(DMEM plus 10% plus antibiotics), group II was maintained in supplemented medium containing dexamethasone, group III was maintained in supplemented medium containing ascorbic acid and sodium-${\beta}$-glycerophosphate, and group IV was maintained in supplemented containing ascorbic acid, sodium-${\beta}$-glycerophosphate and dexamethasone. Morphology of bone nodules was observed with light microscope and electron microscope. The results were as follows: ${\bullet}$ Proliferation capacity of osteoblasts was not affected by single use of dexamethasone, but it was chiefly affected by ascorbic acid. ${\bullet}$ Cellular morphology was fibroblastic appearance initially, but, it was gradually changed to polygonal shape accompanied by confluency stage. ${\bullet}$ Pluripotent mesenchymal cells existed during primary culture, they were differentiated to adipocyte, chondrocyte, osteocyte according to culture condition. ${\bullet}$ Dexamethasone increased bone nodule formation under the condition that the culture was maintained with supplemented medium ascorbic acid and sodium-${\beta}$-glycerophosphate. ${\bullet}$ when the cultures were stained with alizarin red, the group supplemented with dexamethasone, ascorbic acid and sodium-${\beta}$-glycerophosphate showed the marked increase of bone nodule formation, but the group supplemented with ascorbic acid and sodium-${\beta}$-glycerophosphate revealed only small amounts of bone nodules. And the groups cultured without ascorbic acid showed no observed any of bone-like mass independent of dexamethasone addition.

  • PDF