• Title/Summary/Keyword: Fetal ECG extraction

Search Result 6, Processing Time 0.019 seconds

A New Method for the Fetal ECG Extraction from a Signle Channel Maternal ECG (단일채널 산모 복부 심전도로부터 새로운 태아 심전도 검출 방법)

  • Song, M.H.;Cho, S.P.;Kim, Y.W.;Choi, H.S.;Lee, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.467-468
    • /
    • 2007
  • In this paper, we have proposed a new method to extract the fetal ECG from a pregnant woman's abdominal signal using least square acceleration (LSA) filter and adaptive impulse correlation (AIC) filter. To evaluate the performance, the proposed method and other fetal ECG extraction techniques were processed using the real ECG data and then the results were compared. According to comparative results, the proposed method is powerful and successful for extracting the fetal ECG. It was able to separate perfectly even though the fetal beats overlap with the QRS wave of the maternal beats and to extract fetal ECG using any single-channel abdominal signal measured from pregnant woman's abdominal surface. Also, it could be implemented easily by fast computation time and simple structure. It is sure that our method could be useful for portable fetal monitoring system.

  • PDF

Development of a New Non-invasive Fetal Hypoxia Diagnosis System (새로운 비관혈적 태아 저산소증 진단 방법개발에 관한 연구)

  • Lee, Jeon;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.495-501
    • /
    • 2006
  • Diagnostics of unborn baby is mainly aimed at prediction and detection of occurrence of intrauterine hypoxia. Consequences resulting from fetal hypoxia appear in its heart activity. In this study, we have developed a new non-invasive system for fetal hypoxia diagnosis which provides systolic time interval(STI) parameters on the basis of analysis of electrical and mechanical heart activity together. For this we have worked on 1) the proper lead system for the acquisition of abdominal ECG, 2) the independent component analysis based signal processing and fetal ECG separation, 3) the development of a hardware which consists of an abdominal ECG amplifying module and an ultrasound module and 4) the detection of characteristic points of FECG and Doppler signal and the extraction of diagnostic parameters. The developed system was evaluated by the clinical experiments in which 33 subjects were participated. The acquired STI by the system were distributed within the ranges from the well-established invasive results of other researchers. From this, we can conclude that the developed non-invasive fetal hypoxia diagnosis system is useful.

Mobile ECG Measurement System Design with Fetal ECG Extraction Capability (태아 ECG 추출 기능을 가지는 모바일 심전도 측정 시스템 설계)

  • Choi, Chul-Hyung;Kim, Young-Pil;Kim, Si-Kyung;You, Jeong-Bong;Seo, Bong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.431-438
    • /
    • 2017
  • In this paper, the abdomen ECG(AECG) is employed to measure the mother's ECG instead of the conventioanl thoracic ECG measurement. The fetus ECG signal can be extracted from the AECG using an algorithm that utilizes the mobile fetal ECG measurement platform, which is based on the BLE (Bluetooth Low Energy). The algorithm has been implemented by using a replacement processor processed directly from the platform BLE instead of the large statistical data processing required in the ICA(Independent component analysis). The proposed algorithm can be implemented on a mobile BLE wireless ECG system hardware platform to process the maternal ECG. Wireless technology can realize a compact, low-power radio system for short distance communication and the IOT(Intenet of Things) enables the transmission of real-time ECG data. It was also implemented in the form of a compact module in order for mothers to be able to download and store the collected ECG data without having to interrupt or move the logger, and later link the module to a computer for downloading and analyzing the data. A mobile ECG measurement prototype is manufactured and tested to measure the FECG for pregnant women. The experimental results verify a real-time FECG extraction capability for the proposed system. In this paper, we propose an ECG measurement system that shows approximately 91.65% similarity to the MIT database and the conventional algorithm and SNR performance about 10% better.

A New Algorithm for Extracting Fetal ECG from Multi-Channel ECG using Singular Value Decomposition in a Discrete Cosine Transform Domain (산모의 다채널 심전도 신호로부터 이산여현변환영역에서 특이값 분해를 이용한 태아 심전도 분리 알고리듬)

  • Song In-Ho;Lee Sang-Min;Kim In-Young;Lee Doo-Soo;Kim Sun I.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.589-598
    • /
    • 2004
  • We propose a new algorithm to extract the fetal electrocardiogram (FECG) from a multi-channel electrocardiogram (ECG) recorded at the chest and abdomen of a pregnant woman. To extract the FECG from the composite abdominal ECG, the classical time-domain method based on singular value decomposition (SVD) has been generally used. However, this method has some disadvantages, such as its high degree of computational complexity and the necessary assumption that vectors between the FECG and the maternal electrocardiogram (MECG) should be orthogonal. The proposed algorithm, which uses SVD in a discrete cosine transform (DCT) domain, compensates for these disadvantages. To perform SVD with lower computational complexity, DCT coefficients corresponding to high-frequency components were eliminated on the basis of the properties of the DCT coefficients and the frequency characteristics of the FECG. Moreover, to extract the pure FECG with little influence of the direction of the vectors between the FECG and MECG, three new channels were made out of the MECG suppressed in the composite abdominal ECG, and the new channels were appended to the original multi-channel ECG. The performance of the proposed algorithm and the classical time-domain method based on SVD were compared using simulated and real data. It was experimentally verified that the proposed algorithm can extract the pure FECG with reduced computational complexity.

Improvement of Fetal Heart Rate Extraction from Doppler Ultrasound Signal (도플러 초음파 신호에서의 태아 심박 검출 개선)

  • Kwon, Ja Young;Lee, Yu Bin;Cho, Ju Hyun;Lee, Yoo Jin;Choi, Young Deuk;Nam, Ki Chang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.328-334
    • /
    • 2012
  • Continuous fetal heart beat monitoring has assisted clinicians in assuring fetal well-being during antepartum and intrapartum. Fetal heart rate (FHR) is an important parameter of fetal health during pregnancy. The Doppler ultrasound is one of very useful methods that can non-invasively measure FHR. Although it has been commonly used in clinic, inaccurate heart rate reading has not been completely resolved.. The objective of this study is to improve detection algorithm of FHR from Doppler ultrasound signal with simple method. We modified autocorrelation function to enhance signal periodicity and adopted adaptive window size and shifted for data segment to be analysed. The proposed method was applied to real measured data, and it was verified that beat-to-beat FHR estimation result was comparable with the reference fetal ECG data. This simple and effective method is expected to be implemented in the embedded system.