• Title/Summary/Keyword: Fertilizer recommendation

Search Result 79, Processing Time 0.028 seconds

Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse

  • Kim, Young-Sang;Kang, Hyo-Jung;Kim, Tae-Il;Jeong, Taek-Gu;Han, Jong-Woo;Kim, Ik-Jei;Nam, Sang-Young;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • The objective of this study was to determine the effects of granular type of silicate fertilizer on watermelon growth, yield, and characteristics of soil in the greenhouse. Four different levels of silicate fertilizer, 0(control), 600, 1,200, $1,800kg\;ha^{-1}$ were applied for experiment. The silicate fertilizer was applied as a basal fertilization before transplanting watermelon. Compost and basal fertilizers were applied based on the standard fertilizer recommendation rate with soil testing. All of the recommended $P_2O_5$ and 50% of N and $K_2O$ were applied as a basal fertilization. The N and $K_2O$ as additional fertilization was split-applied twice by fertigation method. Watermelon (Citrullus lanatus Thunb.) cultivar was 'Sam-Bok-KKuol and main stem was from rootstock (bottle gourd: Lagenaria leucantha Standl.) 'Bul-Ro-Jang-Sang'. The watermelon was transplanted on April, 15. Soil chemical properties, such as soil pH, EC, available phosphate and exchangeable K, Mg, and available $SiO_2$ levels increased compared to the control, while EC was similar and the concentrations of soil organic matter decreased. Physical properties of soils, such as soil bulk density and porosity were not different among treatments. The growth characteristics of watermelon, such as stem diameter, fresh and dry weight of watermelon at harvest were thicker and heavier for silicate treatment than the control, while number of node was shorter than the control. Merchantable watermelon increased by 3-5% compared to the control and sugar content was 0.4 to $0.7^{\circ}Brix$ higher than the control. These results suggest that silicate fertilizer application in the greenhouse can improve some chemical properties of soils and watermelon stem diameter and dry weight, which are contributed to watermelon quality and marketable watermelon production.

Changes in Soil Properties and Rice Production as Influenced by the Consecutive Application of Liquid Swine Manure in Paddy Field (돈분 액비의 연용이 벼의 수량과 토양에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.221-234
    • /
    • 2016
  • The application of animal manure on farm fields is one of the most economical ways. However, the continuous application of manure in paddy fields might change soil properties influencing the growth of rice plant. Thus, this study was conducted to investigate the changes in selected chemical and biological properties of soils and rice production as affected by the applications of two different fertilizer sources, which were the consecutive applications of liquid swine manure (LSM) and chemical fertilizer (CF), during the three experimental years, from 2012 to 2014. Application amount of LSM was based on 100% of nitrogen fertilizer recommendation rate for rice cultivation estimated by soil testing. Plant height and tiller number in rice at the first year of liquid swine manure manure plot were lower than those of chemical fertilizer plot. Height and tillers of rice in liquid swine manure plot were higher than those of rice in chemical fertilizer plot after consecutive application for 3 years. Rice yield In the first year of application was decreased by 7% than that of chemical fertilizer, but the yield of rice in the third year of application in LM 100% plot was increased by 8% compared to the chemical fertilizer. Toyo-taste value of milled rice in LM 100% was decreased by increasing of protein contents and decreasing rate of perfect grain. The K and Zn contents in the soil were increased in the plots of consecutive LSM application. The results implied that the liquid manure may neither decrease the yield of rice and nor increase soil properties except K and Zn in the soil, and decrease rice quality.

Reducing Nitrogen Fertilization Level of Rice (Oryza sativa L.) by Silicate Application in Korean Paddy Soil (논토양에서 규산질 비료 시용에 의한 질소 시비 저감수준 평가)

  • Lee, Chang-Hoon;Yang, Min-Suk;Chang, Ki-Woon;Lee, Yong-Bok;Chung, Ki-Yeol;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • Silicate (Si) fertilizers are well-known for soil amendment and to improve rice productivity as well as nitrogen efficiency. In this study, we investigated the possible reduction level of nitrogen fertilization for rice cultivation by amending Si fertilizer application. Field experiments were carried out to evaluate the productivity of rice (Oryza sativa L.) on a silt loam soil, where three levels of nitrogen (0, 110 and $165kg\;ha^{-1}$) were selected and Si fertilizer as a slag type was applied at 0, 1 and 2 times of the recommendation level (available $SiO_2\;130mg\;kg^{-1}$). Application of Si fertilizer increased significantly the rice yield and nitrogen efficiency. With increasing N uptake of rice, 1 and 2 times of recommended levels of Si fertilization could decrease nitrogen application level to about 76 and $102kg\;N\;ha^{-1}$ to produce the target yield, the maximum yield in the non-Si amended treatment. Silicate fertilizer improved soil pH and significantly increased available phosphate and Si contents. Conclusively, the Si fertilizer could be a good alternative source for soil amendment, restoring the soil nutrient balance and to reduce the nitrogen application level in rice cultivation.

Relationship between Cucumber Yield and Nitrate Concentration in Plastic Film House with Ryegrass Application (호밀이 투입된 오이 시설재배지에서 수량과 토양용액의 질산태질소과의 관계)

  • Lee, Chang Hoon;Lim, Tae Jun;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.943-948
    • /
    • 2012
  • This study was conducted to estimate the effect of nitrogen reduction by applying ryegrass and to determine the relationship between yield and nitrate concentration of soil solution for cucumber cultivation in plastic film house. Nitrogen levels with recovery of ryegrass ($42.3Mg\;ha^{-1}$) was 0, 50, 75, 100 % of 199 kg N $ha^{-1}$ as N recommendation by determining soil EC value. Yield and nitrate concentration in soil solution was investigated during cucumber cultivation. Yields of N treatments applied ryegrass showed 64.3, 70.9, 70.3, and $76.5Mg\;ha^{-1}$, respectively, it could reduce about 25-50% of nitrogen application compared to yield ($68Mg\;ha^{-1}$) of NPK plot applied 199 kg N $ha^{-1}$. Nitrate concentration in soil solution was average 26.0, 30.1, 41.4, $58.5mg\;L^{-1}$ during cucumber cultivation and was related between yield and average nitrate concentration of soil solution following as; $Y=49.3+0.63X+0.0034X^2$ ($R^2=0.778^{**}$). However, it needs to conduct extra-experiment due to high variation of nitrate concentration during cultivation periods.

Determination on optimum levels of three major fertilizers for Saururus chinensis Baill. (삼백초(Saururus chinensis Baill.) 재배 시 3 요소시비 적량 구명)

  • 김인재;김민자;남상영;이철희;김홍식;박상일
    • Korean Journal of Plant Resources
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2002
  • In order to determine the optimum level of three major fertilizers for Saururus chinensis, we applied to the soil at a rate of N(0, 4, 7, 10kg/10a), P$_2$O$\_$5/(0, 1.5, 3, 4.5kg/10a) and K$_2$O(0, 3, 6, 9kg/10a) prior to seeding. Regarding physical properties after the application, the values of pH, OM, Mg, CEC and EC were higher than those of the pre-application, but the contents of P$_2$O$\_$5/, K and Ca were lower. With application of three major fertilizers, dry weight of leaves per 10a was 26∼108kg greater than that of control(281kg) and dry weight of root tuber was higher by 19∼157kg than that of control(610kg). In regression equation of fertilizer recommendation for two-year-old Saururus chinensis, the optimum level of N-P$\_$2/O$\_$5/-K$\_$2/O fertilizer was determined by 7.1, 2.5, 4.2kg/10a, respectively.

The Properties of Livestock Waste Composts Tea Depending on Manufacturing Method and Their Effect on Chinese Cabbage Cultivation

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Kim, Sun-Jae;Kim, Hee-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Livestock waste compost tea is a liquid extract of compost obtained by mixing livestock compost. In this study, some chemical and microbiological characteristics of compost tea depending on the kind of raw materials used were examined, and several experiments to investigate the practical effects on Chinese cabbage cultivation were conducted. This experiment showed that livestock composts needed to be added into aerated water at the ratio between 1:100 and 1:10 (1 part compost to 10~100 parts water) to produce the high quality compost tea. Compost teas must be aerated more than 24 to 48 hours to be able to support aerobic organisms. In cultivation test with compost teas, swine manure compost teas were made by the extracting ratio of 50x, in the aerated condition for 24 hours in water and oil cake in the extracting ratio of 100x were added as supplements. Following the input of oil cake, the concentration of nitrogen and aerobic bacteria increased. Another experiment was conducted to determine the effect of different swine manure compost teas on plant growth and yield of Chinese cabbage. The fresh yield of Chinese cabbage was higher in the fertigated plots by compost tea with oil cake compared to those of N, $P_2O_5$, $K_2O$ fertilization plot with chemical fertilizer by soil test recommendation (Fert. NPK). The effect of compost tea on growth of Chinese cabbage was largely attributable to the increased number of microorganisms as well as nutrients.

Effects of the Application of Livestock Manure Compost on Reducing the Chemical Fertilizer Use for the Lettuce Cultivation in Green House (시설상추 재배시 축분퇴비 이용에 따른 화학비료 절감효과 평가)

  • Kang, Chang-Sung;Roh, An-Sung;Kim, Sung-Kee;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.457-464
    • /
    • 2011
  • Livestock manure compost (LC) generally contains high content of phosphorus, therefore can be a substitute for phosphorus fertilizers. In this experiment of the cultivation of lettuce in green house, the possibility of LC as a subsitute for phosphorus fertilizer was investigated and the fertilizer efficiency of nitrogen and potassium in LC as compared with chemical N fertilizer (urea) and K fertilizer (potassium chloride) was examined. In proportion to the increase in the application rate of nitrogen fertilizer, soil pH declined, whereas EC and $NO_3$-N content became higher. The application of LC appeared to increase the soil content of organic matter, available phosphate, exchangeable calcium, magnesium and sodium more than that of chemical fertilizer. Supplementation of the K fertilizer by the lack amount from the application of LC resulted in the same exchangeable potassium content in soil with NPK plot in which N, P and K fertilizers were applied by the amount of soil test recommendation. The relationship between soil $NO_3$-N content and nitrogen application rate from fertilizer and compost showed as y=0.57717a+0.19760b+74.65 ($R^2$=0.6347) in which y is the soil $NO_3$-N content (mg $kg^{-1}$), a is nitrogen application rate from fertilizer and b is nitrogen application rate from compost (kg $ha^{-1}$), respectively. From this equation, the supply ability of $NO_3$-N into soil of LC exhibited about 34% (pig manure compost 37.0, chicken manure compost 34.7, cattle manure compost 23.3) of nitrogen fertilizer (urea).

Recommendation of NPK Fertilizers for Chinese Cabbage and Spinach Based on Soil Testing (토양검정(土壤檢定)에 따른 배추와 시금치의 NPK 시비추천(施肥推薦))

  • Song, Yo-Sung;Lee, Choon-Soo;Kwak, Han-Kang;Park, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 1993
  • It is common that in the vegetable cultivation areas, the farmers tend to continue the heavy fertilization to maximize the crop yields in short term. This results in the accumulation of fertilizer elements in the soil and increase in the electrical conductivity of soil. Disregarding these, farmers continue to apply heavy doses of fertilizers. A field experiment was conducted to find out on such a soil whether fertilizer application taking the quantity of nutrients accumulated in the soil into account would save the fertilizer without losing the yield of crop, using Chinese cabbage and spinach as test crops. The findings of the experiment is summarized as following. 1. The yield of Chinese cabbage was not affected by reduction of $19kg\;P_2O_5/10a$ and $7kg\;K_2O/10a$ as compared to farmers doses, and in case of spinach the yield rather was increased under the reduction of $22kg\;P_2O_5/10a$ and $22kg\;K_2O/10a$. 2. The reduction of fertilizers according to plant nutrient status of soils did not affect the inorganic nutrient contents of the crops significantly, in both Chinese cabbage and spinach. 3. A trend was observed that the reduction in the P and K fertilizers application would shorten the storage period of Chinese cabbage. 4. The reduction in P and K fertilizers application resulted in the reduction in available P, exchangeable K, EC and $NO_3-N$ in the soil after the harvest of the crops.

  • PDF

Evaluation of the Amount of Nitrogen Top Dressing Based on Ground-based Remote Sensing for Leaf Perilla (Perilla frutescens) under the Polytunnel House

  • Kang, Seong-Soo;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.598-607
    • /
    • 2016
  • This study was conducted to evaluate the amount of nitrogen (N) top dressing based on the normalized difference vegetation indices (NDVI) by ground based sensors for leaf perilla under the polyethylene house. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization with 3 and 4 replications in Gumsan-gun and Milyang-si field, respectively. Dry weight (DW), concentration of N, and amount of N uptake by leaf perilla as well as NDVIs from sensors were measured monthly. Difference of growth characteristics among treatments in Gumsan field was wider than Milyang. SPAD-502 chlorophyll meter reading explained 43.4% of the variability in N content of leaves in Gumsan field at $150^{th}$ day after seedling (DAS) and 45.9% in Milyang at $239^{th}$ DAS. Indexes of red sensor (RNDVI) and amber sensor (ANDVI) at $172^{th}$ day after seedling (DAS) in Gumsan explained 50% and 57% of the variability in N content of leaves. RNDVI and ANDVI at $31^{th}$ DAS in Milyang explained 60% and 65% of the variability in DW of leaves. Based on the relationship between ANDVI and N application rate, ANDVI at $172^{th}$ DAS in Gumsan explained 57% of the variability in N application rate but non significant relationship in Milyang field. Average sufficiency index (SI) calculated from ratio of each measurement index per maximum index of ANDVI at $172^{th}$ DAS in Gumsan explained 73% of the variability in N application rate. Although the relationship between NDVIs and growth characteristics was various upon growing season, SI by NDVIs of ground based remote sensors at top dressing season was thought to be useful index for recommendation of N top dressing rate of leaf perilla.

Field Variability and Variable Rate Fertilization of Nitrogen in a Direct Seeding Paddy for Precision Agriculture (정밀 농업을 위한 직파 벼 재배 논에서 포장 변이성 조사와 질소의 변량 시비)

  • Jung, Yeong-Sang;Lee, Ho Jin;Chung, Ji-Hoon;Park, Jeong-Geun;Kang, Chang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.202-210
    • /
    • 2005
  • Since understanding on spatial variability of a field is essential to pursue precision agricultural technology, a field study for field variability and variable rate fertilization of nitrogen in a direct seeding paddy was attempted. Variable rate application of nitrogen was designed with soil test, and field application was tested in a direct seeding paddy in the Kimje, Jeonbuk, Korea. The grid samples of soil was collected from the field of which unit size was 35 m by 112 m on February before irrigating of the field. Soil organic matter, available phosphate and silicate, and extractable potassium were analyzed. Variable rate fertilizer recommendation maps of nitrogen for high yielding, HY, and low input sustainable agriculture, LISA, were derived based on the soil analysis. Direct seeding of rice was performed for variable rate treatment, VRT, for the experimental plot in 2001 and 2002, and so did for three volunteer farmers' field in 2003. Yield mapping was performed by harvesting. Economic feasibility of direct seeding of rice by variable rate fertilization was evaluated. Though increased yield of variable rate application and benefit of reducing fertilizer use and environmental impact, the cost for soil test exceeded the total reduced fertilizer cost.