• Title/Summary/Keyword: Fertilizer deep placement

Search Result 9, Processing Time 0.026 seconds

Effect of Fertilizer Deep Placement on Rice and Soybean Yield Using Newly Developed Device for Deep Fertilization (신개발 심층시비장치를 이용한 심층시비가 벼와 콩 수량에 미치는 영향)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Nitrogen fertilizer is an essential macronutrient that requires repeated input for crop cultivation. Excessive use of nitrogen fertilizers can adversely affect the environment by discharging NH3, NO, and N2O into the air and leaching into surrounding water systems through rainfall runoff. Therefore, it is necessary to develop a technology that reduces the amount of nitrogen fertilizer used without compromising crop yields. Fertilizer deep placement could be a technology employed to increase the efficiency of nitrogen fertilizer use. In this study, a deep fertilization device that can be coupled to a tractor and used to inject fertilizer into the soil was developed. The deep fertilization device consisted of a tractor attachment part, fertilizer amount control and supply part, and an underground fertilizer input part. The fertilization depth was designed to be adjustable from the soil surface down to a depth of 40 cm in the soil. This device injected fertilizer at a speed of 2,000 m2/hr to a depth of 25 to 30 cm through an underground fertilizer injection pipe while being attached to and towed by a 62-horsepower agricultural tractor. Furthermore, it had no difficulty in employing various fertilizers currently utilized in agricultural fields, and it operated well. It could also perform fertilization and plowing work, thereby further simplifying agricultural labor. In this study, a newly developed device was used to investigate the effects of deep fertilizer placement (FDP) compared to those with urea surface broadcasting, in terms of rice and soybean grain yields. FDP increased the number of rice grains, resulting in an average improvement of 9% in rice yields across three regions. It also increased the number of soybean pods, resulting in an average increase of 23% in soybean yields across the three regions. The results of this study suggest that the newly developed deep fertilization device can efficiently and rapidly inject fertilizer into the soil at depths of 25 to 30 cm. This fertilizer deep placement strategy will be an effective fertilizer application method used to increase rice and soybean yields, in addition to reducing nitrogen fertilizer use, under conventional rice and soybean cultivation conditions.

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

Effects of Rice Straw Application on the Biological Nitrogen Fixation of Paddy Fields. -I. Effects of Application Method of Rice Straw on the Nitrogen Fixing Activity (논 토양(土壤)의 생물적(生物的) 질소고정(窒素固定)에 미치는 볏짚 시용효과(施用効果) -I. 볏짚 시용방법(施用方法)이 질소고정활성(窒素固定活性)에 미치는 영향(影響))

  • Yoo, Ick-Dong;Matsuguchi, Tatsuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 1983
  • Effects of rice straw application (particularly application method; surface placement and deep placement) on the biological nitrogen fixing activity of paddy fields and on the growth of rice plant have been investigated by the lysimeter experiment with Aragawa alluvial soil and Tochigi ando soil. 1. Nitrogen fixing activity of plow layer (0~1cm) was increased by the rice straw application, notably by the phototrophs, both deep placement and surface placement, between 1 and 2 months of initial growth stage of rice plant. 2. Surface placement method stimulated the nitrogen fixing activity more significantly them the deep placement method, and also showed good effects on the growth of rice plant. 3. The increased of effect on the nitrogen fixing activity of surface placed area was found to be originated from the applied rice straw and its neigh bouring area. 4. Nitrogen fixing activity of surface placed rice straw was rather promoted by the application of herbicides (2, 4, 6-arichlorophenyl ether) than the non-applicated plot.

  • PDF

Study on the Soybean Yield as Influenced by Method and Rate of Phosphate Application in Reclaimed Soil (야산(野山) 개간지(開墾地) 토양(土壌)에서 인산시비방법(燐酸施肥方法) 및 시용량(施用量)이 대두수량(大豆收量)에 미치는 영향(影響))

  • Park, Keon-Ho;Chae, Jae-Seok;Hwang, Nam-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • On a newly reclaimed soil, an experiment was carried out for the elucidation of proper rate of phosphorus fertilizer and application method to increase soybean yield in Honam area. 1. The yield was high in whole layer placement of phosphorus fertilizer and low in deep placement. 2. Broadcasting with 15% of phosphate fixation coefficent and whole layer and deep placement of fertilizer with 10% of phosphate fixation coefficent showed maximum yield. 3. Large application of phosphate increased stem diameter and number of blanches and podes. 4. Application of phosphorus fertilizer increased phosphate content in soil from 9 ppm to 48-223 ppm and contents of bases 5. Significant positive correlation was obtained between soybean yield and phosphorus uptake amount.

  • PDF

Effect of Timing and Placement of N Fertilizer Application for Increased Use Efficiency - Principle and Practice (열대지역(熱帶地域)에 있어서 질소비료(窒素肥料)의 시용시기(施用時期)와 시비위치(施肥位置)가 비료효율(肥料效率)에 미치는 영향(影響) - 원리(原理)와 실제(實際))

  • Hong, Chong-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.285-299
    • /
    • 1987
  • Timing and placement of fertilizer applications are two managerial means to improve the fertilizer use efficiency. The relative importance of these two means is determined by the application rate. With the realistic rate of N application recommended to the small farmers in the tropics, at present and in the near future, basal application in right manner, seems to be more important than split application at different times. In wetland rice soils, deep placement by whatever available means is desirable. But in the situations where perfect deep placement is very difficult to implement, the whole-layer application may be worth trying, until better methods become available. In rainfed uplands, N fertilizer application plans should be contingent upon the amount and distribution of rainfall: apply a less risky rate as subsurface banding near the crop rows to start with; then, depending upon the rainfall prospects in the season, apply or omit the additional dose. Because the patterns of crop response to N fertilizer can be significantly different between the research farms and farmers' fields, it seems imperative to have information on the patterns of crop response to N under farmers' management conditions, for the development of realistic fertilizer application recommendations. To enable the farmers to adopt improved fertilizer application technologies, it is essential to develop and make available to farmers convenient fertilizer applicators. Past experience with the improved fertilizer use technologies indicates that, in the long run, the development of fertilizers that are not only effective and convenient for farmers to use but also easy to produce without major modifications of existing fertilizer production systems is the ultimate solution to the problem of low N fertilizer use efficiency.

  • PDF

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.

The Effects of Nitrogen Application Methods on the Nitrogen Efficiency and Weed Population under the Lowland Rice (수도에 대한 시비방법이 질소효율 및 잡초군락에 미치는 영향)

  • Lee, M.H.;Datta, S.K. De
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.2
    • /
    • pp.269-276
    • /
    • 1976
  • This experiment was conducted to find out how to increase efficiency of fertilizer nitrogen and how to change the weed population with different methods of nitrogen application. Mudball deep placement, at 10-12cm soil depth, produced significantly the highest grain yield within the application methods with same amount of nitrogen (60kg N/ha). It produced also same grain yield with conventional application methods, timely split application method, with 90kg N/ha. Basal application of nitrogen increased weed population and it showed higher dry weight of weed than top dressing methods at early growth stage of rice.

  • PDF

A Study on Technology Transfer of Bokto Seeding Method for Crop Production - Based on Theory of Asian and Pacific Center for Transfer of Technology(APCTT) - (복토직파재배기술의 수용과 기술 확산에 관한 연구 - 아시아태평양기술이전센터(APCTT) 이론을 중심으로 -)

  • Ahn, D.H.;Park, K.H.;Kang, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • This research was conducted to develop a technology transfer and farmer's extension of newly released technology of Bokto seeding method for crop and vegetable production based on the theory of Asian and Pacific Center for Transfer of Technology(APCTT). This technology has recently transferred to not only Korea but also other countries like North Korea, China, Japan, Taiwan, Russia and Africa(Cameroon, Sudan and South Africa) since 2005. It has known as a highly reduction of production cost in terms of labors, chemical fertilizer and pesticides as well as environmental friendly due to a deep and side banded placement of chemical fertilizer at basal application. In addition this technology was proven to a precision farming on sowing depth and mechanism of chemical application method and also highly resistant against disasters like typhoon, flooding, low temperature, drought and lodging due to silicate application. It has improved a constraints such as a poor seedling establishment, weed occurrence, lodging, low yield and poor grain and eating quality in the previous direct seeding methods but still have a problem in occurrence of weedy rice and ununiformed operation of wet or flooded soil condition. Also this technology has a limit in marketing and A/S system. Based on a theory of APCTT evaluation and analysis this technology may be more concentrated on establishment of a special cooperation team among researcher and scientists, extension workers, industry sections and governmental sectors in order to rapidly transfer this technology to farmer's field. Also there will be needed to operate a web site for this newly released technology to inform and exchange an idea, experiences and newly improved information. A feed back system might be operated in this technology as well to improve a technology under way on users' operation. Also user's manual will be internationally released and provided for farmer's instruction and training at field site.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF