• Title/Summary/Keyword: Fertilizer Efficiency

Search Result 447, Processing Time 0.028 seconds

Effect of Rice Straw Treatment and Nitrogen Split Application on Nitrogen Uptake by Direct Seeding on Dry Paddy Rice (벼 건답직파 재배시 볏짚처리 및 질소분시가 질소 흡수에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Sun-Kwan;Kang, Jong-Gook;Lee, Deog-Bae;Kim, Jong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.309-313
    • /
    • 1997
  • Field experiments were conducted on Jeonbug series (Fine silty, mesic family of Aeric Fluventic Haplaquepts), to study the effect of split application of N fertilizer in combination with rice straw on N use efficiency of dry-soil-direct seeded paddy rice. Treatments involved conventional application of N (in three splits; 40% at planting, 30% at five leaf stage and at heading stage) without rice straw, all basal application of N with straw application (5000 kg/ha), N application in two splits (70% at planting and 30% at heading stage) with rice straw application and N application in three splits (40% at planting, 30% at five leaf stage, 30% at heading stage) with application of rice straw. There was Zero N plot too for the estimation of N use efficiency. Seeding was done on dry soil and the filed was flooded 32 days after seeding. The fertilizer application rates were 160, 70, and 80 kg/ha of N, $P_2O_5$ and $K_2O$, respectively. The experiment was conducted for two years, in the same filed. The apparent use efficiency of fertilizer N by rice tended to be higher under the application of rice straw when N was applied in three splits. This, however, did not increase the yield of rice significantly. Even under the application of rice straw, the apparent N use efficiency was lower when N fertilizer was applied in one dose at the planting and in two splits. The lower N use efficiency in these cases, did not yield of rice significantly. The periodical analysis of mineral N in the soil suggested that higher mineral N in the soil at the early stages was responsible for the lower apparent N use efficiency.

  • PDF

Optimum Level of Nitrogen Fertilizer Based on Content of Nitrate Nitrogen for Growing Chinese Cabbage in Green House (시설조건(施設條件)의 배추 재배(栽培) 토양(土壤)에서 질산태질소(窒酸態窒素) 검정(檢定)에 의한 질소실비량(窒素施肥量) 결정(決定))

  • Park, Hyo-Taek;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.384-392
    • /
    • 2000
  • To establish N fertilizer recommended scheme for the Chinese cabbage cultivation in green house based on the soil test of nitrate nitrogen, relationship among the content of soil nitrate and fertilizer effects and fertilizer N use efficiency were investigated from nine soils which differed amount of nitrate nitrogen from $14mg\;kg^{-1}$ to$226mg\;kg^{-1}$. The amount of nitrate nitrogen in soil showed a positive correlation with the dry weight of chinese cabbage in the plot of no fertilization. When the fertilizer effects were calculated by difference between the plots of fertilization and no fertilization in the dry weight and the amount of N uptake, a negative correlation was obtained between the amount of nitrate nitrogen in soils and the fertilizer effects. There was also a negative correlation between the amount of nitrate nitrogen in soils and fertilizer use efficiency. Recommendation of application rate of nitrogen fertilizer based on content of $NO_3-N$ in soils was evaluated by the regression equation among the content of soil nitrate, fertilizer effects and fertilizer N use efficiency. Incase the content of $NO_3-N$ nitrogen in soil is more than $200mg\;kg^{-1}$, No N fertilization is recommended; However, The standard N fertilization($320kg\;ha^{-1}$) is recommended for the soils with less than $50mg\;kg^{-1}$. For the soils ranged from $50mg\;kg^{-1}$ to $200mg\;kg^{-1}$ in the amount of nitrate nitrogen, an equation has been developed in order to calculate the recommended amount of fertilizer N.

  • PDF

Effects of Urease Inhibitor, Nitrification Inhibitor, and Slow-release Fertilizer on Nitrogen Fertilizer Loss in Direct-Seeding Rice

  • Lee, Jae-Hong;Lee, Ho-Jin;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.230-235
    • /
    • 1999
  • To study the effects of an urease inhibitor, N-(n-butyl)-thiophosphoric triamide (NBPT), and a nitrification inhibitor, dicyandiamide (DCD), on nitrogen losses and nitrogen use efficiency, urea fertilizer with or without inhibitors and slowrelease fertilizer (synthetic thermoplastic resins coated urea) were applied to direct-seeded flooded rice fields in 1998. In the urea and the urea+DCD treatments, NH$_4$$^{+}$ -N concentrations reached 50 mg N L$^{-1}$ after application. Urea+NBPT and urea+ NBPT+DCD treatments maintained NH$_4$$^{+}$ -N concentrations below 10 mg N L$^{-1}$ in the floodwater, while the slow-release fertilizer application maintained the lowest concentration of NH$_4$$^{+}$ -N in floodwater. The ammonia losses of urea+NBPT and urea+NBPT+DCD treatments were lower than those of urea and urea+DCD treatments during the 30 days after fertilizer application. It was found that N loss due to ammonia volatilization was minimized in the treatments of NBPT with urea and the slow-release fertilizer. The volatile loss of urea+DCD treatment was not significantly different from that of urea surface application. It was found that NBPT delayed urea hydrolysis and then decreased losses due to ammonia volatilization. DCD, a nitrification inhibitor, had no significant effect on ammonia loss under flooded conditions. The slow-release fertilizer application reduced ammonia volatilization loss most effectively. As N0$_3$$^{[-10]}$ -N concentrations in the soil water indicated that leaching losses of N were negligible, DCD was not effective in inhibiting nitrification in the flooded soil. The amount of N in plants was especially low in the slow-release fertilizer treatment during the early growth stage for 15 days after fertilization. The amount of N in the rice plants, however, was higher in the slow-release fertilizer treatment than in other treatments at harvest. Grain yields in the treatments of slow-release fertilizer, urea+NBPT+ DCD and urea+NBPT were significantly higher than those in the treatments of urea and urea+DCD. NBPT treatment with urea and the slow-release fertilizer application were effective in both reducing nitrogen losses and increasing grain yield by improving N use efficiency in direct-seeded flooded rice field.field.

  • PDF

Production of Eco-friendly Aminotosan® Fertilizer from Waste Livestock Blood using Chitosan Coagulation

  • Kim, Hyeon-Jeong;Shin, Myung-Seop;Jeon, Yong-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.724-730
    • /
    • 2015
  • The aim of this study was to produce Aminotosan$^{(R)}$ fertilizer using optimized chitosan coagulant from waste livestock blood. Amino-acid fertilizer was produced by pretreated livestock blood. Chitosan coagulant was aggregated with amino-acid fertilizer to produce Aminotosan$^{(R)}$. Optimized coagulation conditions were set using chitosan coagulant such as 10% citric acid and 500 ppm chitosan coagulant by analysis of CST and TTF. The efficiency of coagulation by chitosan coagulant under the optimal conditions was better than chemical coagulants. After solid/liquid separation for coagulated amino-acid fertilizer, Aminotosan$^{(R)}$ fertilizer which added eco-friendly and aesthetic functions was produced.

Estimation of Cattle Wastewater Treatment using Singang Advance Biology Reactor (SAB) (SAB 고율미생물반응기를 이용한 축산폐수처리의 성능 평가)

  • Lim, Bongsu;Kim, Doyoung;Park, Sungsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.727-734
    • /
    • 2009
  • This study was carried out to evaluate the high rate biological reactor such as lab scale reactor before the application in site, and to get the basic data for possibility using liquid fertilizer with the effluent from biological reactor when the centrifugal machine was applied. The total volume of this reactor in 6 L, in composted of anoxic reactor (2 L), aerobic reactor (2 L), and nitification reactor (2 L). BOD removal efficiency rates when centrifugal machine was applied after effluent from biological reactor are over than 95%. This biological reactor was required post process to satisfy the effluent standards, and was need centrifugal machine to control the washout of microbes in the reactor. T-N removal efficiency rate in HRT 24 hr with centrifugation is 80.0%, and it is desirable to operate less than $1.3kgN/m^3{\cdot}d$ for 70% of T-N removal efficiency rate. T-P removal efficiency rate in HRT 24 hr is 68.2%, and become higher 71.3% after centrifugation. Considering in the 28.6% T-N removal efficiency rate, the nitrogen contents of the effluent from reactor is 0.34% to satisfy the liquid fertilizer.

Various Nitrogen Efficiencies and their Interrelation Among Rice Varieties (수도품종간(水稻品種間) 여러 질소효율(窒素効率)의 상호관계(相互關係))

  • Park, Hoon;Mok, Sung Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.2
    • /
    • pp.83-92
    • /
    • 1976
  • The relationships between various nitrogen efficiencies among 57 rice cultivars grouped into three developmental categories were investigated by simple correlation with (12kg/10a) and without nitrogen fertilizer under the field condition. The relationship showed similar in a group or among all varieties of three groups. Yield among varieties showed highly significant correlation with Fe (fertilization efficiency: yield increment/nitrogen applied), E (nitrogen efficiency for yield), Ef(efficiency of nitrogen derived from fertilizer) and Eu (fertilizer use efficiency: nitrogen derived from fertilizer divided by total nitrogen applied). The E was correlated significantly and positively with harvest index (HI), percent translocation (T) of nitrogen to ear and negatively with nitrogen uptake amount (N), nitrogen concentration in grain (GN%) and in straw (SN%). The E depends almost on Ef and only inTongil group partly on Es (efficiency of nitrogen derived from soil). The Ef contributes to Fe more than Eu does (Fe = $Ef{\cdot}Eu$). It appears that Ef and Eu increased from the old group to the recommended local varieties, but only EF and Es increased markedly when rice was developed from recommended local group to Tongil line ($indica{\times}japonica$ hybrid selction). The fact that E and Fe depend more on Ef among rice varieties is very good contrast to the result that E and Fe depend more on Es and Eu respectively among soils in the previous investigatigation. The Ef appears as the most important parameter for rice varietal selection under fertilizer application system.

  • PDF

Concepts concerning various nitrogen efficiencies and their interrelation in rice plant (수도(水稻)에서 여러 질소효율의 개념(槪念)과 상호관계(相互關係))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.69-80
    • /
    • 1975
  • Relationships between yield and various nitrogen efficiencies, between efficiencies and between efficiency and nitrogen uptake amount of rice plant were proposed and tested using data from N.P.K simple trials about 30 to 50 locations, for three years. Established relationships are well in accordance with experimental results by showing highly significant correlations between them. The overall indications are that high yielding capacity of fields with fertilizer application, depends primarily on high fertilizer nitrogen uptake by increasing fertilizer use efficiency (Eu), secondly the efficiency (Ef) of absorbed fertilizer nitrogen (Nf) and fertilization efficiency (Fe) and also depends much on nitrogen efficiency for grain yield (E) to great extend and that the efficiency (Es) of soil nitrogen (Ns) contributes to E more than Ef does. All nitrogen efficiencies are negatively correlated with the uptake amount of corresponding nitrogen and counterpart efficiency. Es and Ef could be determined firstly by difference method and secondly E versus Cs (Cs=Ns/Ns+Nf) plotting and thirdly E-Cs plotting with labelled fertilizermethod using the equation E=Es Cs+B where B=Ef Cf but a constant under the given condition and at last Y-Ns plotting with labelled fertilizer using Eq Y=$Es{\cdot}Ns+B$ where B=$Ef{\cdot}Nf$. Es which seems not much variable from field to field is mostly greater (about 80% of tested fields) than Ef which is much variable and depends much on fertilizer form. The relationships tested and well agreed are as follows: 1. Y=$Es{\cdot}Ns+Ef{\cdot}Nf$ (Y is yield) 2. E=$Es{\cdot}Cs+Ef{\cdot}Cf$ where Cf=Nf/Nf+Ns 3. E=b-aN where E=E, Es or Ef and N=N, Ns or Nf respectively, (E=Y/N, N=Nf+Ns), b is theoretical maximum under the given system and a is tangent at N=O of the curve, Y=EN. 4. Fe=Ef Eu and Se=$Es{\cdot}Eu$ where Se is efficiency of soil available nitrogen. 5. E=$(Se{\cdot}Cs+Fe{\cdot}Cf)/Eu$ 6. Y=$Es{\cdot}Eu{\cdot}Sf+Ef{\cdot}Eu{\cdot}Fn$or Y=$Es{\cdot}Eu{\cdot}Ea{\cdot}Sn+Ef{\cdot}Eu{\cdot}Fn $where Sf=$Ea{\cdot}Sn$, Ea is soil available nitrogen equivalent to fertilizer(Sf) divided by total soil nitrogen (Sn).

  • PDF

Effects of Rapeseed Cake Application at Panicle Initiation Stage on Rice Yield and N-use Efficiency in Machine Transplanting Cultivation (채종유박(菜種油粕) 수비시용(穗肥施用)이 벼의 질소이용효율(窒素利用效率)과 수량(收量)에 미치는 영향(影響))

  • Kang, Seung-Weon;Yoo, Chul-Hyun;Yang, Chang-Hyu;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.272-279
    • /
    • 2002
  • A field experiment was conducted to investigate the effect of N-use efficiency and rice yield by rapeseed cake(organic fertilizer) application at panicle initiation stage in machine transplating cultivation from 1999 to 2000. The rice yield increased by 4% in "50% rapeseed cake application", by 2% in "30% rapeseed cake application" at panicle initiation stage, respectively. Amount of fertilizer N uptake was high according to increasing amount of rapeseed cake application at panicle initiation stage compared with conventional treatment, but percentage recovery of fertilizer N was higher in 30% rapeseed cake application than in 50% rapeseed cake application at panicle initiation stage. Thus, this result was thought that there was more adventageous in 30% rapeseed cake application than 50% rapeseed cake application at panicle initiation stage in the fertilizer reduction or N-use efficiency respects in rice paddy.

Improvement of Nitrogen Efficiency by N Application at Early Tillering Stage in Direct-Seeded Rice

  • Seo Jun-Han;Lee Ho-Jin;Lee Seung-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This study was conducted to establish the elaborate nitrogen fertilization method to enhance N use efficiency in direct-seeded rice on flooded paddy. The nitrogen uptake by rice plants was insignificant until 25 days after seeding, and increased gradually thereafter. During this early growth stage, rice plants absorbed only the $4\%$ of basal applied N, while the $45\%$ of N fertilizer remained in the paddy soil. The absorption of basal N by rice plants was almost completed at 46 days after application. Nitrogen top-dressed at 5-leaf stage was well matched to crop nutrient demand, so it could be absorbed so actively in 8days after application. As a result, we could cut down the amount of N fertilizer to $36\%$ of the basal N level without significant difference in yield. Plant recoveries of fertilizer $^{15}N$ applied with different application timings were $7.8\%$ for basal, $9.4\%$ for 5-leaf stage, $17.1\%$ for tillering stage, and $23.4\%$ for panicle initiation stage, respectively. When urea was applied with nitrogen fertilization practice based on basal incorporation (BN), plant recovery of $^{15}N$ at harvest was $31.0\%$, which was originated from $13.7\%$ for grain, and $21.3\%$ of the fertilizer $^{15}N$ remained in the soil, and the rest could be uncounted. Plant recovery of fertilizer $^{15}N$ applied with nitrogen fertilization practice based on topdressing at 5-leaf stage (TN), where N rate was reduced by $18\%$ compared with BN, was $35.1\%$ (grain $15.6\%$), and $19.9\%$ of the fertilizer $^{15}N$ remained in the soil, and the rest could be uncounted. TN showed a higher $^{15}N$ recovery than BN because it was to apply N fertilizer at a time to well meet the demand of rice plant direct-seeded on flooded paddy. We concluded that TN would be the nitrogen fertilization method to enhance N use efficiency in direct-seeded rice on flooded paddy.

Treatment of Pollutants in Free Water Surface Constructed Wetlands with Lotus (Nelumbo nucifera) Cultivation Pond (연 재배지를 활용한 자유수면형 인공습지의 수질정화효율)

  • Han, Myung-Ja;Seo, Dong-Cheol;Kang, Se-Won;Lee, Yong-Chol;Bang, Seok-Bae;Chae, Jung-Heon;Kim, Kap-Soon;Park, Jong-Hwan;Chang, Nam-Ik;Heo, Jong-Soo;Cho, Ju-Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.232-238
    • /
    • 2010
  • In order to investigate the treatment efficiency of pollutants in free water surface constructed wetlands (FWS CWs) with lotus (Nelumbo nucifera) cultivation pond, the experiment was consisted of two sites (site I and II) in Lake Juam, Korea. The sites were configured a lotus cultivation pond (with fertilizer application) - a dropwort bed - a reed bed for site I, and a lotus cultivation pond (without fertilizer application) - a dropwort bed - a reed bed for site II. Removal rate of COD in site I and II were 13.3% and 26.0%, respectively. Removal rate of total nitrogen (TN) was 29.7% for site I, and 36.3% for site II. Removal rate of total phosphorus (TP) in site I and II were 36.0% and 36.5%, respectively. COD, TN and TP in effluent from site I (with fertilizer) was higher than that in site II (without fertilizer), showing that COD, TN and TP in effluent were strongly influenced by fertilizer addition. Therefore, in order to satisfy established water-quality standards, the amount of fertilizer used in lotus cultivation showed be evaluated.