• Title/Summary/Keyword: Fertile pollen

Search Result 22, Processing Time 0.018 seconds

Inheritance Study of Male Sterile Transformants Containing Pollen-specific Promoter and Diphtheria Toxin A Gene (수술특이프로모터와 디프테리아 독성 유전자에 의한 웅성불임 형질전환체의 후대 유전분석)

  • Park, Young-Doo;Kim, Hyun-Uk;Park, Beom-Seok;Jin, Yong-Moon
    • Horticultural Science & Technology
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2000
  • The objectives of this study were to investigate the genetic and phenotypic features of male sterile transformants by pollen-specific expression of diphtheria toxin gene and to find out inheritance patterns of transgene to the next generation. When backcrossed (BC) progenies were tested for expression of kanamycin resistance ($Km^R$), 9 lines out of 13 lines, except 4 lines ($BC_{1}5-13,\;BC_{1}5-23,\;BC_{1}5-28,\;BC_{1}5-32$), showed the ratio of $Km^R$ to kanamycin sensitive ($Km^S$), from 1:30 to all $Km^S$. As a result, they were much lower than Mendelian segregation of a dominant gene. To determine whether male sterility is a heritable and stable trait, 5 male sterile plants ($BC_{1}5-13,\;BC_{1}5-14,\;BC_{1}5-23,\;BC_{1}5-32,\;BC_{1}5-33$ lines) which had different transgene copy numbers were backcrossed as female parents with pollens from wild type. To confirm the existence of the DTx-A gene in the genome of the progenies, PCR was conducted using specific primers of the DTx-A coding region. A PCR band of 428 bp was obtained from each generation, which is the predicted size of the DTx-A gene fragment. Trangenes were inherited to the next $BC_4T_0$ progenies and showed male sterility, however, based on the copy numbers of DTx-A gene male sterile plants did not show predicted ratio. When male sterile plants were backcrossed with fertile plants, fruit capsule sizes and seed settings were relatively reduced from those of selfing wild type plants. The fruit sizes and seed settings were reduced in proportion to the increase in the copy number of DTx-A gene.

  • PDF

Studies on the Species Crossabilities in the Genus Pinus and Principal Characteristics of F1 Hybrids (일대잡종송(一代雜種松)의 교배친화력(交配親和力)과 특성(特性)에 관(關)한 연구(硏究))

  • Ahn, Kun Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.1-32
    • /
    • 1972
  • By means of the interspecific hybridization in the Sub-genus Diploxylon of the Genus Pinus, $F_1$ hybrids of Pinus rigida${\times}$elliottii, Pinus rigida${\times}$radiata, P. rigida${\times}$serotina and P. densiflora${\times}$thunbergii had been produced. And on the basis of the crossabilities of these hybrids the taxonomic affinities of these pines were examined. And the needle characteristics of these hybrid and the occurence of phenolic substances in these $F_1$ hybrid were also investigated to see the potential usefulness of these characteristics for the diagnosis of the taxonomic affinity. And, the growth performances of the $F_1$ hybrids have also been compared with those of parental species. In order to contribute to the establishment of the hybrid seed orchard the introgression phenomena between P. densiflora and P. thunbergii in the eastern coastal area have also been investigated along with the investigation of the heterozygosity of plus trees of P. densiflora growing in the clone bank in Suwon. And the results were summarized as follows. 1. On the basis of crossabilities as well as on the taxonomic affinities according to the systems of Shaw, Pilger and Duffield, it has been proven that the parental species of those hybrids are of close affinities and range of the fertile hybrid seed production rate was as high as 28-58% in the best hybrid combination (Table 13). 2. Among those hybrids, the ${\times}$ Pinus, rigiserotina hybrid seemed to be most promising in the growth performance exhibiting 109-155% more volume growth compared to the seed parent with the statistic significance of 1% level (Tables 16 and 17). 3. Notwithstanding the fact that the all of the pollen parents are cold tender, all hybrids exhibit cold hardiness as much as their seed parent and it seems to suggest that the characteristics of cold hardiness were transmitted from the seed parent. 4. Though a striking difference in needle length was observed between the parental species of each hybrid, it was difficult to distinguish each hybrid from their seed parent by the needle length except ${\times}$P. rigiserotina which is characterized by long needle which is 65% more longer than the needle of the seed parent (Table 21). 5. With regard to the anatomical characteristics of needle, the hypoderm is apparently thicker in most of the $F_1$ hybrid pines and the characteristics of resin canals are dominated by medial in most $F_1$ hybrid. And, the fibrovascular bundles were apart as were in their seed parent. Therefore it was found to be possible to distinguish the hybrids pines from their parents by the needle characteristics. And, it is to be noticed that the ${\times}$P. densithunbergii was more close to the pollen parent having RDI value of 0.73 (Fig.l, Table 22). 6. It has been demonstrated that ${\times}$P. rigielliottii, ${\times}$P. rigiradiata and ${\times}$P. rigitaeda have a phenolic substance (No.7) of light yellow at Rf-0.46, same as their seed parent, but no trace of phenolic substance was observed in their pollen parent. This fact will serve as an important criteria for early identification of hybridity in progeny testing. However, the fact that both of ${\times}$P. rigiserotina and ${\times}$P. densithunbergii exhibit the same reactions of phenolic substances as well their parental species seems to indicate the close affinities between the parental species of the respective hybrid (Fig.2, Table 23). 7. The separation and the reaction of phenolic substance developed on TLC were found to be same in the same species showing no variations between the individuals, and no variations due to tree part of sampling, tree age or pollen sources. And the reaction was also observed regardless of the not varied by the kind of developing solvent whether it is Aceton-Chloroform (3:7 v/v) or Benzene-Methanol-Acetic acid (90:16:8 v/v). 8. The introgression phenomena of natural Pinus densifiora stand in both east and west coastal area indicates that the major part of the red pines investigated are all heterozygous and the heterozygosity of pines are higher in the west coast than in the east coast(Tables 24 and 25). 9. Based on the RDI, among the plus trees of Pinus densiflora selected in Korea and Japan as well, no pure P. densiflora has been found. Since all of the sample trees of Pinus densiflora were found to be as heterozygous bearing part of the characteristics of P. thunbergii, those red pines were considered to be natural heterotic hybrid pines(Figs. 3 and 4. Tables 26 and 27).

  • PDF