• Title/Summary/Keyword: Ferromagnetism

Search Result 152, Processing Time 0.023 seconds

Studies of Nonstoichiometry and Physical Properties of the Perovskite $Sm_{1-x}Sr_xCoO_{3-y}$ System

  • 강진우;류광현;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.600-603
    • /
    • 1995
  • A series of samples in the Sm1-xSrxCoO3-y(x=0.00, 0.25, 0.50, 0.75 and 1.00) system has been prepared at 1200 ℃ under ambient atmosphere. The X-ray diffraction patterns of the samples with x=0.00 and 0.25 are indexed with orthorhombic symmetry like GdFeO3 and x=0.50 appears to be perfectly cubic. In the tetragonal system (x=0.75), the structure is similar to that of SrCoO2.80. The composition of x=1.00, SrCoO2.52, shows the brownmillerite-type structure. The reduced lattice volume is increased with x value in this system. The chemical analysis shows the τ value (the amount of the Co4+ ions in the system) is maximized at the composition of x=0.50. Nonstoichiometric chemical formulas are determined by the x, τ and y values. The electrical conductivity has been measured in the temperature range of 78 to 1000 K. The activation energy is minimum for those of x=0.25 and x=0.50 with metallic behavior. First-order semiconductor-to-metal transition of SmCoO3 is not observed. Instead, a broad, high-order semiconductor-to-metal transition is observed. In general, the effective magnetic moment is increased with increasing τ values at low temperature. At high temperature, the magnetic moment is maximum for that of x=0.00. The 3d-electrons are collective and give ferromagnetism in x=0.50.

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

Magnetic and Magnetotransport Properties of (1-x) $La_{0.7}Sr_{0.3}MnO_3-xRE_2O_3$ (RE=La, Nd) Composites

  • Kim, Hyo-Jin;Kang, Young-Min;Yoo, Sang-Im
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.192-192
    • /
    • 2009
  • Magnetic and magnetotransport properties of (1-x) $La_{0.7}Sr_{0.3}MnO_3-xRE_2O_3$ (RE=La, Nd) (x = 0.025, 0.05, 0.075, 0.1, 0.2, 0.3) composite polycrystalline samples were systematically studied. Samples were prepared using conventional solid-state reaction. LSMO and $RE_2O_3$ react at high temperature and become chemically compatible. The ferromagnetic-paramagnetic transition temperatures ($T_c$) of the LSMO-$Nd_2O_3$ composite samples were decreased 313K~349K with increasing x, while the $T_c$ values of the LSMO-$La_2O_3$ composite samples were almost unaltered in the range of 355K~358K, representing that the ferromagnetism of LSMO might be more seriously degraded by Nd substitution on the ($La_{0.7}Sr_{0.3}$) site. However, LSMO-$RE_2O_3$ composite samples exhibit greatly enhanced low field magnetoresistance (LFMR) and dMR/dH value without an appreciable increase in its resistivity. Remarkably improved LFMR properties are attributed to LSMO grain boundaries acting as effective spin-dependent scattering centers. The relationship among the $RE_2O_3$ addition, microstructure, magnetic and magnetotransport properties will be discussed in this paper.

  • PDF

Characteristics of MnxSi1-xTe Compound Studied by Electron Magnetic Resonance and Other Experiments

  • Na, Sung-Ho;Kim, Heung-Chul;Park, Jung-Woo;Kim, Jang-Whan
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • The magnetic and other physical characteristics of $Mn_xSi_{1-x}Te$ have been investigated by electron magnetic resonance (EMR), X-ray diffraction (XRD) and other experiments. $Mn_xSi_{1-x}Te$ is found to have corundum structure for manganese contents up to 10% and also to be ferromagnetic for temperatures below 80 K. While ferromagnetic resonance signal coexists with the usual paramagnetic resonance signal, invariance of the g-factor inferred from the electron paramagnetic resonance signals throughout all temperature ranges clearly confirms that the manganese ions are in the electronic 3d5 state. The temperature dependence of EMR line-width is the same as other diluted magnetic semiconductors. From the EMR signals relaxation times $T_2$ and $T_1$ of $Mn_xSi_{1-x}Te$ compounds are estimated to be about $4.4{\times}10^{-10}s$ and $9.3{\times}10^{-8}s$ respectively and are found to vary slightly with temperature or composition change. Exchange narrowing of the EMR line-width becomes dominant for the sample in which the substitution ratio, x = 30%. For one sample, in which x = 0.5%, spin glass-like behavior is indicated by EMR signals for temperatures lower than 60 K. This behavior may authentic for samples within a certain range of x.

Theoretical considerations on the giant magnetoimpedance effect in amorphous ribbons

  • Phan, Manh-Huong;Nguyen Cuong;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.60-61
    • /
    • 2003
  • Theoretical considerations on a giant magneto-impedance (GMI) effect in amorphous ribbons (i.e., thin films) have been made in terms of the expressions of effective permeability and impedance derived in the frame of classical electrodynamics and ferromagnetism. The dependence of GMI effect on the external do magnetic field (H$\_$ext/) and the frequency of alternating current are simulated and discussed in the knowledge of energy conversion consisting of the current energy loss, the ferromagnetic energy consumption, and the magnetic energy storage in the film. The obtained results are summarized as follow: (a) As frequency f< 20 ㎒, the real part of effective permeability (${\mu}$′) changes slightly. The peak of the ${\mu}$′curve always locates at H$\_$ext/=H$\_$ani/ - the anisotropy field. However, the peak value of ${\mu}$′ tends to increase with increasing frequency in the frequency range of 11-20 ㎒. (b) In the frequency range, f= 21-23 ㎒, a negative peak additionally appears. Meanwhile, both the positive and negative peak values rapidly increase with increasing frequency and their peak positions shift towards a high H$\_$ext/. (c) The positive peak value of ${\mu}$′ starts to decrease at f= 29 ㎒ and its negative peak does so at about 35 ㎒. Then, both peaks keep such a tendency and their peak positions move to high H$\_$ext/, as increasing frequency. (d) The dependence of the imaginary part of effective permeability (${\mu}$") on the external dc magnetic field and the frequency of the alternating field indicates that there is only one peak involved in ${\mu}$" for the whole frequency range. (e) The impedance vs. magnetic field curves at various frequencies show that there is a critical value of frequency around f= 18-19 ㎒ where the transition between two frequency regimes occurs; the one (low frequency) in which ${\mu}$′ predominantly contributes to the GMI effect and the other (high frequency) in which ${\mu}$" determines the GMI effect.

  • PDF

A Convergence Test of the Full-potential Linearized Augmented Plane Wave (FLAPW) Method: Ferromagnetic Bulk BCC Fe

  • Seo, Seung-Woo;Song, You-Young;Gul, Rahman;Kim, In-Gee;Weinert, M.;Freeman, A.J.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.137-143
    • /
    • 2009
  • The convergence behavior of the all-electron full-potential linearized augmented plane-wave (FLAPW) method with the explicit orthogonalization (XO) scheme is tested on ferromagnetic bulk body-centered-cubic Fe. Applying a commonly used criterion relating the plane-wave and angular momentum cutoffs, $l_{max}\;=\;R_{MT}K_{max}$, where $R_{MT}$ is the muffin-tin (MT) sphere radius and $K_{max}$ is the plane-wave cutoff for the basis - the total energy is converged and stable for $K_{max}R_{MT}$ = 10. The total energy convergence dependence on the star-function cutoff, $G_{max}$, is minimal and so a $G_{max}$ of 3$K_{max}$ or a large enough $G_{max}$ is a reasonable choice. We demonstrate that the convergence with respect to $l_{max}$ or a fixed large enough $G_{max}\;and\;K_{max}$ are independent, and that $K_{max}$ provides a better measure of the convergence than $R_{MT}K_{max}$. The dependence of the total energy on $R_{MT}$ is shown to be small if the core states are treated equivalently, and that the XO scheme is able to treat systems with significantly smaller $R_{MT}$ than the standard LAPW method. For converged systems, the calculated lattice parameter, bulk modulus, and magnetic moments are in excellent agreement with the experimental values.

Temperature Dependent Angle Resolved Photoemission Spectroscopy Study of Pseudo-gaps in $Sm_{1.82}Ce_{0.18}CuO_4$ (각분해 광전자분석 실험을 이용한 $Sm_{1.82}Ce_{0.18}CuO_4$ 물질의 온도에 따른 가짜 갭 연구)

  • Song, D.J.;Choi, H.Y.;Kim, Chul;Park, S.R.;Kim, C.;Eisaki, H.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.83-86
    • /
    • 2010
  • There are theoretical and experimental evidences for the pseudo-gap in electron doped cuprates being due to interaction between electrons and anti-ferromagnetism(AFM). A remaining issue is on how AFM correlates with pseudo-gap, and eventually with superconductivity. To elucidate the issue, we have performed temperature dependent angle-resolved photoemission studies of an e-doped cuprate superconductor $Sm_{2-x}Ce_xCuO_4$(SCCO) x=0.18 at 20K and 150K. In the case of $Nd_{2-x}Ce_xCuO_4$, the most well known e-doped cuprate, pseudo-gap disappears at around 100 K for x=0.17. Our experimental result reveals that the pseudo-gap of SCCO exists even at 150K for x=0.18. This result implies that the AFM of SCCO survives even in x=0.18, which agrees with previously reported phase diagram of SCCO. Yet, the superconductivity disappears around x=0.18 for both NCCO and SCCO in spite of the difference in the magnetic order. This result sheds a light on the disappearance of superconductivity on the over-doped side.

Modulation of Defect States in Co- and Fe-implanted Silicon by Rapid Thermal Annealing

  • Lee, Dong-Uk;Lee, Kyoung-Su;Pak, Sang-Woo;Suh, Joo-Young;Kim, Eun-Kyu;Lee, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.314-314
    • /
    • 2012
  • The dilute magnetic semiconductors (DMS) have been developed to multi-functional electro-magnetic devices. Specially, the Si based DMS formed by ion implantation have strong advantages to improve magnetic properties because of the controllable effects of carrier concentration on ferromagnetism. In this study, we investigated the deep level states of Fe- and Co-ions implanted Si wafer during rapid thermal annealing (RTA) process. The p-type Si (100) wafers with hole concentration of $1{\times}10^{16}cm^{-3}$ were uniformly implanted by Fe and Co ions at a dose of $1{\times}10^{16}cm^{-2}$ with an energy of 60 keV. After RTA process at temperature ranges of $500{\sim}900^{\circ}C$ for 5 min in nitrogen ambient, the Au electrodes with thickness of 100 nm were deposited to fabricate a Schottky contact by thermal evaporator. The surface morphology, the crystal structure, and the defect state for Fe- and Co- ion implanted p-type Si wafers were investigated by an atomic force microscopy, a x-ray diffraction, and a deep level transient spectroscopy, respectively. Finally, we will discuss the physical relationship between the electrical properties and the variation of defect states for Fe- and Co-ions implanted Si wafer after RTA.

  • PDF

Magnetism in Ni-W textured substrates for coated conductors

  • Song K. J.;Park Y. M.;Yang J. S.;Kim S. W.;Ko R. K.;Kim H. S.;Ha H. S;Oh S. S.;Park C.;Joo J. H.;Kim C. J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.7-10
    • /
    • 2005
  • The magnetic properties of a series of both annealed (biaxially textured) and as-rolled (non-textured) Ni-xW alloy tapes with compositions x = 0,1,3, and 5 at.$\%$, were studied. Characterization methods included XRD analyses to investigate the biaxial cube texturing of the annealed Ni-W alloy tapes and studies of the magnetization M for both annealed and as-rolled Ni-W alloy tapes. Both the isothermal mass magnetizations M(H) of a series of samples at different fixed temperatures and M(T) in fixed field, employing a PPMS-9 (Quantum Design), were measured. The Ni-W alloys have shown much reduced ferromagnetism as W-content x increases. Both the saturation magnetization Msat and Curie temperature Tc decrease linearly with W-content x, and both Msat and Tc go to zero at critical concentration of Xc - 9.50 at. $\%$ W.

Mössbauer Study of Ti0.9957Fe0.01O2

  • Kim, Eng-Chan;Moon, S.H.;Woo, S.I.;Kim, H.D.;Kim, B.Y.;Cho, J.H.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.106-108
    • /
    • 2005
  • The rutile polycrystal $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ prepared with $^{57}Fe$ enriched iron have been studied by $M\ddot{o}ssbauer$ spectroscopy, X-ray diffraction and VSM. The $M\ddot{o}ssbauer$ spectrum of $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ consists of a ferromagnetic and a paramagnetic phase over all temperature ranging from 4 to 300 K. Isomer shifts indicate $Fe^{2+}$ for the ferromagnetic phase, but $Fe^{3+}$ for the paramagneic phase of $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ sample. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.48 times as large as that of $\alpha$-Fe. The XRD data for $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ showed a pure rutile phase with tetragonal structures without any segregation of Fe into particulates within the instrumental resolution limit The magnetic hysteresis (M-H) curve at room temperature showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied field of 1 T was estimated to be about $0.71{\mu}_B$, suggesting a low spin configuration of Fe ions.