• Title/Summary/Keyword: Ferromagnetic state

Search Result 109, Processing Time 0.028 seconds

Magnetic Properties of Cu-doped AlN Semiconductor (AlN 반도체와 Cu의 도핑 농도에 대한 자성)

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2010
  • First-principles calculations based on spin density functional theory are performed to study the spin-resolved electronic properties of AlN doped with a Cu concentration of 6.25%-18.75%. The ferromagnetic state is more energetically favorable state than the antiferromagnetic state or the nonmagnetic state. For $Al_{0.9375}Cu_{0.0625}N$, a global magnetic moment of 1.26 mB per supercell, with a localized magnetic moment of 0.75 $m_B$ per Cu atom is found. The magnetic moment is reduced due to an increase in the number of Cu atoms occupying adjacent cation lattice position. For $Al_{0.8125}Cu_{0.1875}N$, the magnetism of the supercell disappears by the interaction of the neighboring Cu atoms. The nonmagnetic to ferromagnetic phase transition is found to occur at this Cu concentration. The range of concentrations that are spin-polarized should be restricted within very narrow.

Correlation between Ferromagnetic State and Thermally Stable Layer of Fe on the W(001) Surface

  • Sin, Min-Jeong;Park, Byeong-Gyu;Hwang, Chan-Yong;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.173.1-173.1
    • /
    • 2014
  • The variations of electronic and magnetic properties of ultrathin Fe overlayers on a W(001) surface as a function of Fe film thickness (1.0~4.0 ML) has been investigated using x-ray magnetic circular dichroism (XMCD) in conjunction with ultraviolet photoelectron spectroscopy (UPS) and low energy electron diffraction (LEED). We found that the ferromagnetic property of Fe film started to build up over 2.0 ML, as we confirmed the spin and angular moment contribution to the magnetic moment using XMCD experiments. We will systematically demonstrate that the occurrence of ferromagnetic property of Fe film on a W(001) surface is closely correlated to a themally stable layer of Fe film on a W(001) surface.

  • PDF

First-Principles Study of Magnetic Interactions between Transition Metal Ions in ZnO (ZnO내 전이 금속 불순물의 자기적 특성에 관한 제일원리 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.444-448
    • /
    • 2010
  • Based on first-principles calculations, we study the magnetic properties of Co, Ni, Fe, V, and Mn impurities in ZnO. The stabilities of the ferromagnetic state and the magnetic moment of each impurity largely depend on the amount of doped electron or hole. For lightly doped n-type ZnO, it is found that the doping of Ni ions is the most effective for inducing ferromagnetism, while Fe ions show the most stable ferromagnetic couplings for heavily doped n-type samples. The characteristics of the magnetic interactions of Co ions are similar with those of Fe ions, but Co ions require much larger amount of doped electron than Fe ions to show the ferromagnetic couplings. The ferromagnetic coupling between Mn and V ions is unstable in n-type conditions.

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • AliAsghar Moslemi Beirami;Vadim V. Ponkratov;Amir Ebrahim Akbari Baghal;Barno Abdullaeva;Mohammadali Nasrabadi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

$^{11}B$ Nuclear Magnetic Resonance Study of Calcium-hexaborides

  • Mean, B.J.;Lee, K.H.;Kang, K.H.;Lee, Moo-Hee;Lee, J.S.;Cho, B.K.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.2
    • /
    • pp.80-88
    • /
    • 2003
  • We have performed $^{11}$ B nuclear magnetic resonance (NMR) measurements to microscopically investigate an electronic structure of the ferromagnetic state in three different compositions of calcium-hexaboride single crystals. Although the crystal structure of Ca $B_{6}$ is cubic and three NMR lines may be expected for the nuclear spin 3/2 of $_{11}$ B, a larger number of NMR resonance peaks have been observed. The frequency and intensity of those peaks distinctively changes depending on the angle between crystalline axis and magnetic field. Analyzing this behavior, we find that the electric field gradient(EFG) tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency $v_{Q}$ 600 kHz. Even though the magnetization data highlight the ferromagnetic hysteresis, $^{11}$ B NMR linewidth data show no clear microscopic evidence of the ferromagnetic state in three different compositions of Ca $B_{6}$ single crystals.s.

  • PDF

Half-metallic Ferromagnetism for Mn-doped Chalcopyrite (Al,Ga)As Semiconductor (Chalcopyrite (Al,Ga)As 반도체와 Mn의 반금속 강자성)

  • Kang, B.S.;Song, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • We studied the electronic and magnetic properties for the Mn-doped chalcopyrite (CH) AlAs, GaAs, and AlGaAs2 semiconductor by using the first-principles calculations. The chalcopyrite AlGaP2, AlGaAsP, and AlGaAs2 compounds have a semiconductor characters with a small band-gap. The interaction between Mn-3d and As-4p states at the Fermi level dominate rather than the other states. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the Mn(3d)-As(4p) strong coupling, which is attributed by the partially filled As-4p bands. The holes are mediated with keeping their 3d-electrons, therefore the ferromagnetic state is stabilized by this double-exchange mechanism. We noted that the ferromagnetic state with high magnetic moment is originated from the hybridized As(4p)-Mn(3d)-As(4p) interaction mediated by the holes-carrier.