• Title/Summary/Keyword: Ferroin

Search Result 4, Processing Time 0.019 seconds

Spontaneous Formation of Revival Waves in the 1,4-Cyclohexanedione-Bromate-Ferroin Reaction

  • Huh, Do-Sung;Kim, Young-Joon;Kim, Hye-Sook;Kang, Jong-Kon;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.267-270
    • /
    • 2004
  • The bromate-1,4-cyclohexanedione-ferroin oscillating reactions are uncovered to support two types of wave activities, in which spontaneous formation of circular waves has been achieved after the disappearance of initial waves. The induction period of the revival wave is typically above 10 hours and its dependence on the initial concentrations of reactants is qualitatively different from that of initial waves. In addition to their differences in propagating speed and wavelength, the initial waves and the revival patterns have different colors, suggesting that different reaction mechanisms are involved in the formation of these spatiotemporal behaviors. Our experiments further show that the addition of hydroquinone to the reacting system can significantly shorten the induction time of the revival wave, which implicates that hydroquinone is not only a product in the bromate-1,4-cyclohexanedione-ferroin oscillating reaction but also plays a critical role in the following reactions.

Flotation-Spectrophotometric Determination of Ag(I) at the 10-7 mol L-1 Level Using Iodide and Ferroin as an Ion-associate

  • Hosseini, Mohammad Saeid;Hashemi-Moghaddam, Hamid
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1529-1532
    • /
    • 2005
  • A simple and cost effective method for separation and preconcentration of Ag(I) at the $10^{-7}\;mol\;L^{-1}$ level in the environmental and mineral samples is present. The method is based on the flotation of Ag(I)-iodide complex as an ion-associate with ferroin in pH of 4 from a large volume of an aqueous solution (500 mL) using nheptane. The floated layer was then dissolved in dimethylsulfoxide (DMSO) for the subsequent spectrophotometric determination. Beer's law was obeyed over a range of 2.0 ${\times}$ $10^{-7}$-4.0 ${\times}$ $10^{-6}$ mol $L^{-1}$ with the apparent molar absorptivity of 2.67 ${\times}$ $10^5$ L $mol^{-1}\;cm^{-1}$. The detection limit (n = 5) was 4 ${\times}$ $10^{-8}$ mol $L^{-1}$, and RSD (n = 5) obtained for 2.0 ${\times}$ $10^{-6}$ mol $L^{-1}$ of Ag(I) was 2.2%. The interference effects of a number of elements was studied and found that only $Hg^{2+}$ at low concentration, and $Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, and $Fe^{3+}$ ions at moderately high concentrations were interfered. To overcome on these interference effects, the solution was treated with EDTA at a buffering pH of 4 and passed through a column containing Amberlite IR-120 ionexchanger resin, just before the flotation process. The proposed method was applied to determine of Ag(I) in a synthetic waste water, a photographic washing sample and a geological sample and the results was compared with those obtained from the flame atomic absorption spectrometry. The results were satisfactorily comparable with together, so that the applicability of the proposed method was confirmed in encountering with the real samples.

The Comparison of the Bead Size Effect on the Two Wave Patterns Induced in One Reaction System

  • Heo, Do Seong;Kim, Min Seok;Jo, Sang Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.867-871
    • /
    • 2001
  • We have studied the characteristic wave propagation in 1,4-CHD-Bromate-Ferroin reaction system and we have examined the bead size effect on the wave propagation of the system by adopting a half-divided Petri dish which is separated into two parts by the size of cation-exchange resin. It has been done to understand the reaction process inducing the characteristic wave behavior in the system. The characteristic wave behavior of the system is in the spontaneous induction of a revival wave with a long time lag. We have obtained a result that the revival wave is not affected by the size of catalyst-doped beads while the initially induced wave is influenced by the size of beads. It means that the two waves are induced by different reaction processes each other and the revival wave is induced by an uncatalyzed reaction process.

The Analysis Method for Evaluation of Phosphoric Acid Poisioning of Pt Based Catalyst by Using Hydrogen Peroxide Decomposition Reaction (과산화수소 분해반응을 이용한 Pt계 촉매의 인산피독 특성 평가 방법)

  • PARK, JEONGJIN;YANG, SEUNGWON;CHUNG, ONGJIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.669-674
    • /
    • 2017
  • In this study, the novel electrochemical and colorimetric analysis methods are suggested to estimate the degree of phosphoric acid ion poisoning on Pt based catalyst surface and to confirm the possibility of replacing the expensive and long time consumed conventional methods. As the ways, the electrochemical half cell tests such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV) are used and the change in chemical behavior by absorption of the phosphoric acid ion on Pt based catalyst surface and hydrogen peroxide decomposition reaction are successfully recognized by colorimetric measurements. Conclusively, it is proved that the new methods show superior sensitivity for identifying the degree of phosphoric acid poisoned on Pt based catalyst.