• 제목/요약/키워드: Ferrite/pearlite

검색결과 165건 처리시간 0.019초

냉각제어된 Fe-Si-Mn-P 고장력 강판의 미세조직 및 기계적성질 (Microstructure and Mechanical Properties of Fe-Si-Mn-P High Strength Steel Sheet Controlled by Cooling Rate)

  • 문원진;김익수;강창용;김헌주;성장현;김기돈
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.109-120
    • /
    • 1997
  • Microstructure and mechanical properties of Fe-Si-Mn-P high strength steel sheet have been investigated by controlling the cooling rate. Bainite and ferrite were obtatined by annealing in the ferrite pluse austenite region, and ferrite and austenite were obtatined after annealing in the fully austenite region. Ferrite and pearlite were obtained when the cooling rate was controlled from the annealing temperature above $760^{\circ}C$ and bainite showed with increasing cooling rate, however below $760^{\circ}C$ ferrite and bainite were obtained. Tensile strengths and hardness nearly unchanged with increasing cooling rate after control the cooling rate from the temperature above $760^{\circ}C$, while tensile strengths increased and elongation decreased with increasing cooling rate when the cooling rate was controlled from the tempeature below $760^{\circ}C$. Without regard to annealing temperature, tensile strength increased and elongation decreased with increasing cooling rate. Tensile strengths and elongation values heat treated in the ferrite plus austenite region were higher than those in the fully austenite region. Retained austenite and strength-elongation balance showed the maximum value at $780^{\circ}C$ and decreased with increasing annealing temperature. Strength-elongation balance value was controlled by the retained austenite.

  • PDF

구상흑연주철(球狀黑鉛鑄鐵)의 혼합조직(混合組織) 및 강인성(强靭性)에 미치는 합금원소(合金元素)와 특수열처리(特殊熱處理)의 영향(影響) (Effects of the Alloying Elements and Special Heat Treatment on the Multi-phase (Ferrite-Bainite-Martensite), Strength and Toughness in Ductile Cast Iron)

  • 김석원;이의권;심재환
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.432-440
    • /
    • 1993
  • Ductile cast iron has a good ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. Also, it has been reported that, additional strengthening and toughening of the ductile cast iron can be obtainded from the proper combination of matrix structures by the heat treatment and addition of alloying elements. In this study the effect of special heat treatment and addition of alloying elements(Ni, Mo) on the multi-phase(ferrite-bainite-martensite) structures, strength and toughness of ductile cast iron were studied systematically. In water quenching from $770^{\circ}C$, the martensite volume(%) increased, but the ferrite volume(%) decreased with increment of Ni content. In as cast, pearlite volume(%) and hardness increased with increment of Mo and Ni contents. And with the increment of the destabilization austempering holding time, the bainite volume(%) increased but the martensite volume(%) decreased. As destabilization austempering holding time is same, bainite volume(%) decreased, martensite increased with the increment of Ni and Mo contents. The hardness and tensile strength decreased, but impact energy increased with the decrease of Ni and Mo contents, and increment of holding time of destabilization austempering treatment.

  • PDF

가속냉각처리한 API-X70강의 미세조직과 기계적 특성에 미치는 구상화 열처리시간의 영향 (Effect of Spherodizing Heat-treatment Time on Microstructure and Mechanical Property in Accelerated Cooling-treated API-X70 Steel)

  • 배동수
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.525-530
    • /
    • 2021
  • The purpose of this study was to investigate the effect of spherodizing heat treatment holding time on the microstructure and mechanical properties of the accelerated cooling-treated API X70 steel, which is mainly used as a structural material for line pipe steel for natural gas pipes. The accelerated cooling-treated API X70 steel was spherodizing treated at 700℃ for 12~48 h. The microstructure was observed using an OM and a FEG-SEM, and mechanical properties were obtained by tensile test. The microstructure of the API X70 steel was banded in the hot rolling direction, and the polygonal ferrite(PF) adjacent to pearlite(P) has mainly a fine size, and coarse PF and fine acicular ferrite were formed in the middle of P and P. As the spherodizing treatment time increased, the number of carbide particles decreased and its distribution interval increased, and the ferrite grain size was coarsened. The tensile strength decreased and the ductility increased with spherodizing treatment time, and the yield point elongation was disappeared in a stress-strain curve after the spherodizing treatment.

스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화 (Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting)

  • 이기락;나형용
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동 (Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels)

  • 김현철;이재현;권오덕;임창희
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

ADINA & WINLIFE 활용한 압력용기 용접부 피로파괴 해석 (Effect of Weld Elastic Modulus on Simulation of Stress Concentration and Fatigue Life for Boiler Vessel)

  • 최병학;이범규;심종헌;박찬성;김진표;박남규
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.47-53
    • /
    • 2016
  • The aim of this study is to consider effect of weld elastic modulus on simulations of stress concentration and fatigue life for pressure vessel. The investigations include analysis with ADINA and WINLIFE softwares for whole body model about using condition of the boiler vessel. Values of weld elastic modulus were divided by 5 steps in butt weld area of the boiler vessel body. The stress concentration of the butt weld more was increased in case of higher elastic modulus of weld area because of higher difference of material properties between matrix and weld. It was concluded that the fatigue lives were decreased along increasing stress concentration due to high elastic modulus of weld. The matrix microstructure was estimated as pearlitic structure of ${\alpha}$ ferrite and pearlite. And the microstructures of welds along 5 steps of elastic modulus were estimated as bainitic fine pearlite and martensite as increasing elastic modulus.

Effect of Shot Peening on Microstructural Evolution of 500-7 Ductile Cast Iron

  • Zhang, Yubing;Shin, Keesam
    • Applied Microscopy
    • /
    • 제48권3호
    • /
    • pp.73-80
    • /
    • 2018
  • Ductile cast iron is widely used for many automotive components due to its high wear resistance and fatigue resistance in addition to the low cost of fabrication. The improvement of wear resistance and fatigue properties is key to the life time extension and performance increase of the automobile parts. Surface nanocrystallization is a very efficient way of improving the performance of materials including the wear- and fatigue-resistance. Shot peening treatment, as one of the popular and economic surface modification methods, has been widely applied to various materials. In this study, ductile cast iron specimens were ultrasonic shot peening (USP) treated for 5 to 30 min using different ball size. The microstructures were then microscopically analyzed for determination of the microstructural evolution. After the USP treatment, the hardness of pearlite and ferrite increased, in which ball size is more effective than treatment time. With USP treatment, the graphite nodule count near the surface was decreased with grain refinement. The lager balls resulted in an increased deformation, whereas the smaller balls induced more homogenously refined grains in the deformation layer. In addition, formation of nanoparticles was formed in the surface layer upon USP.

오스템퍼링 조건과 Mn의 양이 ADI의 기계적 성질에 미치는 영향 (Effect of Austempering Factors and Mn Addition on Mechanical Properties of ADI)

  • 서관수;예병준
    • 한국주조공학회지
    • /
    • 제12권5호
    • /
    • pp.390-396
    • /
    • 1992
  • In this study, we investigated effect of austempering factors and Mn addition on mechanical properties of ADI with ferrite-bainite matrix by pearlite-bainite transformation treatment. Ductile cast iron specimens containing various of Mn were austenitized at 875$^{\circ}C$ for 350 sec or 925$^{\circ}C$ for 160 sec and then austempered at 300$^{\circ}C$ or 400$^{\circ}C$ for the various periods(5 to 30 min). Manganese increased pearlite volume fraction in as cast ductile cast iron. The obtained results are as follows ; 1) In austenitizing, hardness of sepecimens austenitized at 875$^{\circ}C$ for 350 sec was higher than that of 925$^{\circ}C$ for 160 sec. 2) In effect of austempering temperature, tensile strength and handness of specimens austempered at 300$^{\circ}C$ was higher than that of 400$^{\circ}C$. However, elongation had reverse tendency. 3) Increasing austempering time decreased hardness due to the increment of bainite and retained austenite fractions. However, toughness are increased.

  • PDF

KR60 레일의 미세조직과 기계적 물성 평가 (Investigation of Microstructure and Mechanical Properties of KR60 Rail)

  • 최욱진;조희재;윤경민;민경환;임남형;이수열
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.652-657
    • /
    • 2017
  • The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.

고창 무장현 관아와 읍성 출토 비격진천뢰의 제작기법과 보존처리 (Manufacturing Technique and Conservation of Bigyeokjincheolloe Bomb Shells Excavated from the Ancient Local Government Office and Fortress of Mujang-hyeon, Gochang)

  • 김해솔;허일권
    • 박물관보존과학
    • /
    • 제24권
    • /
    • pp.17-36
    • /
    • 2020
  • 본 연구는 2018년 고창 무장현 관아와 읍성에서 발굴된 비격진천뢰 11점의 보존처리 과정과, 컴퓨터단층촬영(CT)과 감마선(γ-ray)투과조사·금속 조직 분석을 통한 제작기법을 수록하였다. 보존처리는 2019년 국립진주박물관에서 진행한 특별전 '비격진천뢰'(07.16.~08.25.) 전시를 위한 1차 보존처리 과정인 이물질제거와 강화처리를 진행 하였고, 이 과정에서 비격진천뢰 뚜껑(개철, 蓋鐵)을 최초로 확인 할 수 있었다. 제작기법의 경우 11점의 CT와 γ-ray촬영 결과 본체 내부에 많은 기공과 측면에 형틀받침쇠(chaplet, 型持)가 사용되었음을 확인하였으며, 기벽의 두께는 위아래에 비해 측면이 비교적 얇게 설계되었다. 또한 아래 부분 중앙에 쇳물주입구 흔적이 관찰되어 본체를 뒤집은 상태에서 쇳물이 주입되었음을 확인하였다. 금속 조직 분석은 본체 2점과 뚜껑 1점의 분석을 실시하였다. 분석 결과 본체는 시멘타이트(cementite)조직과 펄라이트(pearlite)조직이 관찰되어 주조로 만들어졌고, 뚜껑은 페라이트(ferrite) 조직에 일부 펄라이트가 끼어있으며 비금속 개재물이 일직선으로 관찰되어 단조로 만들었다는 것을 확인하였다.