• 제목/요약/키워드: Fermi surface

검색결과 81건 처리시간 0.024초

Electronic structure of the Au intercalated monolayer graphene on Ni(111)

  • Hwang, H.N.;Jee, H.G.;Han, J.H.;Tai, W.S.;Kim, Y.D.;Hwang, C.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.342-342
    • /
    • 2010
  • We have investigated an Au intercalated monolayer graphene on Ni(111) using angle-resolved photoemission spectroscopy (ARPES), high resolution photoemission spectroscopy (HRPES), and low energy electron diffraction (LEED) at the 3A2 ARUPS beamline in Pohang Accelerator Laboratory. We find the monolayer graphene is well grown on the Ni(111) surface by the adsorption of acetylene. However, the graphene does not show the characteristic $\pi$ band near the Fermi level due to its strong interaction with the underlying substrate. When Au is adsorbed on the surface and then annealed at high temperature, we observe that Au is intercalated underneath the monolayer graphene. The process of the Au intercalation was monitored by HRPES of corresponding Au 4f and C 1s core levels as well as the electronic structure of the $\sigma$, $\pi$ states at $\Gamma$, K points. The $\sigma$, $\pi$ bands of graphene shift towards the Fermi level and the $\pi$ band is clearly observed at K point after the intercalation of full monolayer Au. The full width at half maximum (FWHM) of the C 1s peak narrows to approximately 0.42 eV after intercalation. These results imply that the interaction between the graphene and substrate is considerably weakened after the Au intercalation. We will discuss the graphene is really closer to ideal free standing graphene suggested recently.

  • PDF

The Analytical Solutions for Finite Clusters of Cubic Lattices

  • Gean-Ha Ryu;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.544-554
    • /
    • 1991
  • Using the Huckel method, we obtain the analytical expressions for eigenvalues and eigenvectors of s.c., f.c.c. and b.c.c. clusters of rectangular parallelepiped shape, and of an arbitrary size. Our formula converage to those derived from the Bloch sum, in the limit of infinite extension. DOS and LDOS reveal that the major contribution of the states near Fermi level originates from the surface atoms, also symmetry of DOS curves disappears by the introduction of 2nd nearest neighbor interactions, in all the cubic lattices. An accumulation of the negative charges on surface of cluster is observed.

In Situ Spectroscopy in Condensed Matter Physics

  • Noh, Tae Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2014
  • Recently, many state-of-art spectroscopy techniques are used to unravel the mysteries of condensed matters. And numerous heterostructures have provided a new avenue to search for new emergent phenomena. Especially, near the interface, various forms of symmetry-breaking can appear, which induces many novel phenomena. Although these intriguing phenomena can be emerged at the interface, by using conventional measurement techniques, the experimental investigations have been limited due to the buried nature of interface. One of the ways to overcome this limitation is in situ investigation of the layer-by-layer evolution of the electronic structure with increasing of the thickness. Namely, with very thin layer, we can measure the electronic structure strongly affected by the interface effect, but with thick layer, the bulk property becomes strong. Angle-resolved photoemission spectroscopy (ARPES) is powerful tool to directly obtain electronic structure, and it is very surface sensitive. Thus, the layer-by-layer evolution of the electronic structure in oxide heterostructure can be investigated by using in situ ARPES. LaNiO3 (LNO) heterostructures have recently attracted much attention due to theoretical predictions for many intriguing quantum phenomena. The theories suggest that, by tuning external parameters such as misfit strain and dimensionality in LNO heterostructure, the latent orders, which is absent in bulk, including charge disproportionation, spin-density-wave order and Mott insulator, could be emerged in LNO heterostructure. Here, we performed in situ ARPES studies on LNO films with varying the misfit strain and thickness. (1) By using LaAlO3 (-1.3%), NdGaO3 (+0.3%), and SrTiO3 (+1.7%) substrates, we could obtain LNO films under compressive strain, nearly strain-free, and tensile strain, respectively. As strain state changes from compressive to tensile, the Ni eg bands are rearranged and cross the Fermi level, which induces a change of Fermi surface (FS) topology. Additionally, two different FS superstructures are observed depending on strain states, which are attributed to signatures of latent charge and spin orderings in LNO films. (2) We also deposited LNO ultrathin films under tensile strain with thickness between 1 and 10 unit-cells. We found that the Fermi surface nesting effect becomes strong in two-dimensions and significantly enhances spin-density-wave order. The further details are discussed more in presentation. This work was collaborated with Hyang Keun Yoo, Seung Ill Hyun, Eli Rotenberg, Ji Hoon Shim, Young Jun Chang and Hyeong-Do Kim.

  • PDF

195Pt NMR Study of the Influence of Nation Ionomer on the Enhanced Local Density of States at the Surface of Carbon-Supported pt Catalysts

  • Han, Kee-Sung;Lee, Moo-Hee
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.135-142
    • /
    • 2009
  • $^{195}Pt$ NMR measurements were performed to deduce the variation of local density of states at the Fermi energy ($E_F$-LDOS) at the surface of carbonsupported Pt catalysts due to the addition of $Nafion^{(R)}$ ionomer in the metalelectrode-assembly for fuel cells. The results showed that the EF-LDOS at the surface of Pt particles was enhanced by the addition of $Nafion^{(R)}$ ionomers whereas it was uninfluenced in the inner (bulk) part of the Pt particles. This suggests that the effects of ionomers on the electronic states of the Pt particle surface are related to the electrochemical activity of the catalysts.

혼합 전도체 $\beta-LiAl$의 전자구조, 결합과 Li 이온 이동에 따른 영향 (Electronic Structure, Bonding and Kithium Migration Effects of the Mixed Conductor $\beta-LiAl$)

  • Jang, Gun-Eik;I.M Curelaru
    • 한국진공학회지
    • /
    • 제5권3호
    • /
    • pp.194-198
    • /
    • 1996
  • Detailed expermental studies of theelectronic structure of the valence and conduction bands of the mixed conductor $\beta$-LiAlindicate that a quasi-gap opens at the Fermi level, and the conduction states are highlylocalized, as opposed to the theoretical band structure calculations that predict predominant metallic behavior. Evidence for complex lithium migration effects involving the surface of Lial , induced by particle (electron or ion) bombardment and mechanical treatment , has been obtained as a byproduct of these experiments.

  • PDF

금속에 있어서 전자-음향자 상호작용에 관한 연구 (Investigation of the Electron-phonon Interaction in Metals)

  • 김성규;김예현
    • 한국음향학회지
    • /
    • 제1권1호
    • /
    • pp.92-96
    • /
    • 1982
  • In this paper, the interaction of electron and phonon in metals is expressed using Hamiltonian operator as follows. By excahnging phonon energy with in the vicinity of isotropical Fermi surface and using following electron and hole operators. We obtain the interaction of electron and phonon. And new Feynman Graphs are tried with the following conditions on. First, when state transfer state, phonon cannot be created. Second, when state transfer state, phonon cannot be destroyed. Third, when state transfer state, phonon can be created or destroyed. Fourth, when state transfer state, phonon can be created or destroyed.

  • PDF

Structural and Electronic Properties of an Alkali Fulleride, $Rb_1C_{60}$

  • 이혜영;정동운
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권1호
    • /
    • pp.43-45
    • /
    • 1996
  • Structural and electronic properties of an alkali metal fulleride, Rb1C60, was studied. In spite of the chain structure with shortdistance between balls along the crystallographic a-direction, the electronic structure calculation study with the X-ray defined crystal structure shows that Rb1C60 is a three-dimensional metal at room temperature. This result is different from the magnetic experiments in which the compound was found to behave as a quasi-one-dimensional metal. Partial Fermi surface nesting is supposed to be the reason for the metal-insulator transition found in Rb1C60 at ∼50 K.

Band Electronic Structure Study of Two-Dimensional Organic Metal (BEDT-TTF)2Cu5I6 with a Polymer Anion Layer

  • Dae Bok Kang
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.515-517
    • /
    • 1991
  • The electronic behavior of a organic metal $(BEDT-TTE)_2$${Cu_5}{I_6}$ observed to be stable at low temperatures was examined by performing tight-binding band electronic structure calculations. The suppression of a metal-insulator tansition is likely to originate from its quasi-two-dimensional Fermi surface with no nesting, in agreement with experiment.

Temperature and Coverage Dependent Quasi-reversible Two-photon Photoemission of 1-phenyl-1-propyne on Cu(111)

  • Sohn, Young-Ku;Wei, Wei;Huang, Weixin;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1980-1984
    • /
    • 2011
  • A temperature- and coverage-dependant quasi-reversible change in two-photon photoemission (2PPE) of chemisorbed 1-phenyl-1-propyne (PP) on Cu(111) is reported. For PP on Cu(111) at 300 K probed at a photon energy of 4.13 eV, two broad peaks of comparable intensity show final state energies of 7.25 and 7.75 eV above the Fermi level. The former peak could be assigned to the first image potential state (IS, n = 1) and/or unoccupied molecular orbital (UMO), located at 3.1 eV above the Fermi level. The latter is plausibly attributed to a mix of unoccupied higher-order IS (and/or UMO) and occupied surface state (SS) of Cu(111). With decreasing the temperature, the former 2PPE peak shows a shift in position by about 0.2 eV, and the latter exhibits a dramatic increase in intensity. In the system, intermolecular interactions (and/or order-disorder transition) of PP and substrate lattice temperature may play a significant role in change in photoexcitation lifetime (or excitation cross-section), and the unoccupied molecular orbital (UMO)-metal (IS) charge transfer coupling. Our unique 2PPE results provide a deeper insight for understanding photoexcitation charge transfer with temperature in an organic molecule/metal system.

연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구 (Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach)

  • 강석호;이창미;임동희
    • 대한환경공학회지
    • /
    • 제38권5호
    • /
    • pp.242-248
    • /
    • 2016
  • 연료전지에서의 전체 반응 속도는 산화전극에서 일어나는 수소산화반응에 비해 그 반응 속도가 현저히 느린 환원전극에서의 산소환원반응(oxygen reduction reaction, ORR)에 의해 결정된다. ORR 효율성 평가를 용이하게 하는 지표(descriptor)로서 촉매 표면에서의 산소원자 흡착강도를 활용하는데, 산소흡착강도는 촉매 표면의 기하학적 구조 변형에 따른 전자구조를 변형함으로써 조절할 수 있다. 이에 본 연구에서는 백금 표면의 원자모델을 이용하여 표면의 기하학적 구조가 산소흡착강도에 미치는 영향과 그 원인을 밀도범함수이론(density functional theory, DFT) 계산을 통해 분석하였다. 먼저, 기하학적 구조를 인위적으로 변형시킨 Pt(111) 표면에서의 산소흡착반응을 밀도범함수이론 계산을 이용해 분석함으로써 기하학적 구조변화가 산소흡착강도에 미치는 영향(strain effect)을 확인하였다. 최적화한 Pt 격자상수($3.977{\AA}$)에 ${\pm}1%$ 간격의 변화율을 적용하고 각 변화율마다의 산소흡착강도를 계산하였는데, Pt-Pt 원자 간 거리가 멀어질수록 산소흡착강도가 강해지는 것을 확인하였다. 이는 원자 간 거리가 증가할수록 d-band center가 페르미 준위(Fermi level)쪽으로 이동하게 되며, 이로써 일부 반결합 오비탈(anti-bonding orbitals)에 전자가 채워지지 않기 때문에 전체적으로 반결합 오비탈이 형성될 가능성이 적어지기 때문이다. 결과적으로, 순수한 백금이 가진 격자상수($3.9771{\AA}$) 보다 약 2~4% 작은 백금 표면 격자크기를 가질 수 있도록 유도할 수 있다면 산소흡착강도가 적절히 약하게 조절될 수 있으며, 이는 순수한 백금보다 더 향상된 ORR 성능을 가진 촉매물질 개발 연구를 위한 기초자료로서 활용할 수 있을 것이다.