• Title/Summary/Keyword: Fermentation system

Search Result 637, Processing Time 0.031 seconds

Bifidobacterium Fermentation of Rice and Apple Pomace Mixture (쌀과 사과박 혼합물을 이용한 Bifidobacterium발효제품의 개발)

  • 이주연;박종현;장학길;목철균
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.333-338
    • /
    • 1999
  • This study was aimed to develop a value-added fermented products from rice and apple pomace using Bifidobacterium fermentation. The Bifidobacterium fermentation system of the mixture of rice and apple pomace was developed, and the physicochemical properties of the products were investigated. After 4 different bifidobacteria were compared for their fermentation capability and sensory properties of the fermented product, Bifidobacterium FBD-13 and FBD-22 were selected as appropriate strains for the fermentation of saccharified rice solution(SRS). The optimum inoculation level was 2% and the optimum fermentation time was 42 hrs. When wet apple pomace(WAP) was added to SRS, it contributed to the improvement of sensory properties of the fermented products and the optimum mixing ratio was 40% WAP and 60% SRS in weight. For the fermentation of the mixture of WAP and SRS, Bifidobacterium FBD-27 and FBD-22 were selected as suitable strains.

  • PDF

Fuzzy Logic Control of Rotating Drum Bioreactor for Improved Production of Amylase and Protease Enzymes by Aspergillus oryzae in Solid-State Fermentation

  • Sukumprasertsri, Monton;Unrean, Pornkamol;Pimsamarn, Jindarat;Kitsubun, Panit;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

Ethanol Production from Lignocellulosic Biomass by Simultaneous Saccharification and Fermentation Employing the Reuse of Yeast and Enzyme

  • KIM, JUN-SUK;KYUNG-KEUN OH;SEUNG-WOOK KIM;YONG-SEOB JEONG;SUK-IN HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • Simultaneous saccharification and fermentation (SSF) experiments were carried out with a lignocellulosic biomass. The effects of temperature on enzymatic saccharification and the ethanol fermentation were also investigated. The batch SSF process gave a final ethanol concentration of 10.44 g/l and equivalent glucose yield of 0.55 g/g, which was increased by 67% or higher over the saccharification at 42℃. The optimal operating condition was found to vary in several parameters, such as the transmembrane pressure, permeation rate, and separation coefficient, related to the SSF combined with membrane system (semi-batch system). When the fermentation was operated in a semi-batch mode, the efficiency of the enzymes and yeast lasted three times longer than in a batch mode.

  • PDF

Changes of chemical and Antioxidative Characeristics of chlorophylls in the Model System of Mustard Leaf Kimchi during Fermentation (갓김치모델시스템에서 발효과정중 Chlorophylls의 특성변화에 대한 연구)

  • 최홍식;송은승;전영수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.520-525
    • /
    • 1999
  • Changes of chemical and oxidative/antioxidative characteristics chlorophylls(CHLs) and their derivatives in the model system of mustard leaf kimchi(MLK) were investigated. During fermentation of MLK(at 15oC, for 25days, 2.3$\pm$ 0.1% salt content) pH and total acidity were decreased/increased from 5.6 and 0.4%(initial day) to 3.6 and 1.07%(final day) resceptively. Activities of lipoxygenase and peroxidase were decreased gradually, however, these of chlorophyllase was increased in the first 10 days of fermentation. CHLs of MLK in the initial stage of fermentation were degraded rapidly and all CHLs and chlorophyllides were converted to pheophytins and pheophorbides in the final stage. Deg radation effects of CHLs(a & b) and their derivatives(pheophytins a & b) fractionated from MLK and carotene on the autoxidation and lipoxygenase oxidation of linoleic acid were observed, and also stronger antioxidative activities of CHLs and pheophytins were shown in their autoxidation/enzymtic oxidation of linoleic acid.

  • PDF

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Characteristics of Fermented Wood Chips and Pig Manure (목질칩을 이용한 분뇨 발효 시 목질칩과 돈분뇨의 성분 변화)

  • Kim, Myung-Kil;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • After manufacturing fermentation system for degrading pig manure using environmentally friendly technique, performance of the system and characteristics of wood chips and pig manure fermented in the system were analyzed. Results from this study shows that proper fermentation temperature($55{\sim}60^{\circ}C$) reached 3days after the system started and degradation rate, which expresses fermentation performance of system, was $180{\iota}$/day. Even as progressing the fermentation of wood chips and pig manure mixture, the amount of extractives drawn out by alkali, and alcohol-benzene and lignin content was not varied. However, ash content in wood was increased. The inorganic compounds in pig manure seem to be transferred into wood chip. On the other hand holocellulose contents in wood were decreased a little. Holocellulose seems to be consumed as the second carbon source in fermentation process. Results through analysis of inorganic- and heavy metal elements contents in wood chips and pig manure fermented in long term process shows that inorganic elements($Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+$ etc.) contents were increased with fermentation time and heavy metal elements(Cd, As, Cu etc.) which cause environmental pollution were not detected. Number of microorganisms including bacteria, actinomycetes, and fungi, the number of C.F.U(Colony Forming Unit) was increased while temperature in fermentation system was abruptly increased.

  • PDF

Investigation into the Ecological and Natural Dyeing with Medicinal Plants after Fermentation by NURUK and the Effect of Natural Additives

  • Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study was to develop higher-value added dyeing materials with the fermentation-dyeing -mordanting system using only the natural ingredients by integrating traditional fermentation techniques with traditional dyeing technique. Nuruk, which is used mainly to ferment traditional foods, was used as a fermenting agent to ferment 5 different types of materials. Acidic burnt alum and alkaline calcium hydroxide were used as natural mordants. The dyeability checked after fermentation showed that both cotton and silk mordanted with Gardenia jasminoides did not show notable changes, and 10 days of fermentation was found to be appropriate. Sophora japonica L. performed better on cotton materials mordanted with slaked lime, and alkaline mordants were found to be more effective than acidic ones. With Rheum coreanum, a fermentation period of more than 24 days ($5^{th}$ fermentation) worked best on cotton material, showing a 5 fold increase in the K/S value after the $5^{th}$ slaked lime fermentation than with no fermentation. Rhus javanica L. was found to increase the color fastness to gentle washing and the fastness to light was found to possess 4 means that natural dyed fabric have the highest level of durability, the grade 1 the lowest level of fastness.

Effects of Lactobacillus curvatus and Leuconostoc mesenteroides on Suan Cai Fermentation in Northeast China

  • Yang, Hongyan;Wu, Hao;Gao, Lijuan;Jia, Hongbai;Zhang, Yuan;Cui, Zongjun;Li, Yuhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2148-2158
    • /
    • 2016
  • To investigate the effects of Lactobacillus curvatus and Leuconostoc mesenteroides on suan cai (pickled Chinese cabbage) fermentation, L. curvatus and/or Ln. mesenteroides were inoculated into suan cai. Physicochemical indexes were measured, and the microbial dynamics during the fermentation were analyzed by Illumina MiSeq sequencing and quantitative polymerase chain reaction (qPCR). The results showed that inoculation with lactic acid bacteria (LAB) lowered the pH of the fermentation system more rapidly. The decrease in water-soluble carbohydrates in the inoculated treatments occurred more rapidly than in the control. The LAB counts in the control were lower than in other inoculated treatments during the first 12 days of fermentation. According to the Illumina MiSeq sequencing analyses, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Fusobacteria, and Verrucomicrobia were present in the fermentations, along with other unclassified bacteria. Generally, Firmicutes was predominant during the fermentation in all treatments. At the genus level, 16 genera were detected. The relative abundance of Lactobacillus in all inoculated treatments was higher than in the control. The relative abundance of Lactobacillus in the treatments containing L. curvatus was higher than in the Ln. mesenteroides-only treatment. The relative abundance of Leuconostoc in the Ln. mesenteroides-containing treatments increased continuously throughout the fermentation. Leuconostoc was highest in the Ln. mesenteroides-only treatment. According to the qPCR results, L. curvatus and/or Ln. mesenteroides inoculations could effectively inhabit the fermentation system. L. curvatus dominated the fermentation in the inoculated treatments.

Cell-Recycled Continuous Ethanol Fermentation of Molasses (당밀의 균체순환식 Ethanol 연속발효)

  • 김익환;김병홍;민태익
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.155-162
    • /
    • 1982
  • A cell-recycled continuous fermentation process was studied to produce ethanol from molasses using Sacchoromyces uvarum ATCC26602 at 35 $^{\circ}C$. The fermentation system was divided into two stages in order to reduce the inhibitions of ethanol and substrate for cell growth and fermentation rate. The first reactor was aerated at the rate of 0.12 vvm whilst the second was kept anaerobic. In medium composition studies, it was revealed that inorganic nutrient supplement to the diluted molasses with 14% fermentable sugar was not needed for the fermentation, however, phosphate limitation was observed when cell propagation was contemplated. By using the cell-recycled continuous fermentation system, 14.5 hour was required to produce 8.4-9.0% (v/v) of ethanol from diluted molasses containing 14% of fermentable sugar. The ethanol productivity was 6.2g/$\ell$hr with the yield of 88.1-94.4% to the theoretical value.

  • PDF

Changes in the Components during Alcohol Fermentation of Potatoes Using Pilot System (Pilot system을 이용한 감자의 알콜발효중 성분 변화)

  • Jeong, Yong-Jin;Seo, Ji-Hyung;Lee, Joo-Baek;Jang, Sang-Moon;Shin, Seung-Ryeul;Kim, Kwang-Soo
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.233-239
    • /
    • 2000
  • To proceed mass production and improve its quality, we fermented potatoes using pilot system and investigated the changes in components during fermentation. After liquefaction and saccharification of potatoes by Nuruk(group I), crude enzyme(group II) and glucoamylase(group III), sugar contents in all groups were 18brix equally. However sugar contents in group(II) and group(III) after 24hrs decreased deeply to 7.2 and 8.8 % respectively, after 24hrs. Alcohol content in group(I) increased slowly and was the highest such as 6.8% after 48hrs. Fusel oils in all groups were n-propanol, isobutanol and isoamylalcohol. The major fusel oil in all groups was isoamylalcohol. At the early stage of fermentation, free sugars were glucose, maltose and lactose. Glucose decreased deeply during fermentation and at latter of the fermentation, galactose was detected in all groups. The contents of total free amino acid were 516.57~569.98 mg% in group(I), 193.97~292.11 mg% in group (II) and 186.31~270.53 mg% in group(III). The contents of aspartic acid, serine, glutamic acid, alanine, arginine, and histidine were high in all groups.

  • PDF