• Title/Summary/Keyword: Fermentation rate

Search Result 1,160, Processing Time 0.026 seconds

Monitoring for the Fermentation Conditions of Sweet Persimmon Vinegar using Response Surface Methodology (반응표면분석에 의한 단감식초 제조조건의 모니터링)

  • 정용진;서권일;이기동;윤광섭;강미정;김광수
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.8 no.1
    • /
    • pp.57-65
    • /
    • 1998
  • To utilize deteriorated sweet persimmon effectively, response surface methodology(RSM) was used to determine the optimal vinegar fermentation conditions and monitored by a divided two stage fermentation. The optimum conditions for maximum alcohol content were obtained when the first stage (alcohol fermentation) was carried out with an initial sugar concentration of 18.5$^{\circ}$Brix, agitation rate of 140.8 rpm, fermentation time of 127.6 hr. When sugar concentration was 14$^{\circ}$Brix maximum alcohol content(7.1%) was predicted at fermentation conditions of 160 rpm in agitation rate, 140hr in fermentation time. The optimum conditions for maximum acidity were obtaiend when second stage(vinegar fermentation)was carried out 249.5 rpm in agitation rate, 148.8 hr in fermentation time. Predicted values at the optimum conditions were similar to experimental values.

  • PDF

Prediction of Oxygen Transfer Rate During Sisomicin Fermentation Employing Air Lift Fermentor (Air Lift Fermentor에서 Sisomicin 발효시에 발효유사액을 이용한 산소전달속도 예측)

  • 김성룡;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.659-664
    • /
    • 1994
  • In order to predict gas hold-up and oxygen transfer rate during sisomicin fermentation employing air lift fermentor, simulated media similar to fermentation broths in rheological proper- ties were prepared and used. Rheological properties of fermentation broths from 40 hours and 60 hours of cultivation were analyzed by applying to Power's Law equation. Regardless of addition and no addition of MgSO$_{4}$, the tendencies, that n value was decreased and K value was increased as aeration rate was increased, were shown. Simulated media of twelve different fermentation broths were formulated in a range of 0.7 to 2.1% CMC, and the values of gas hold-up and k$_{L}$a depending on superficial air velocity were measured using these simulated media. And the relation- ships, $\varepsilon$=$\alpha$U$_{Gr}$$\beta$, K$_{L}$a=$\gamma$U$_{Gr}$$\delta$ were obtained, and these equations are thought to be used to predict the values of gas hold-up and k$_{L}$a during fermentation.

  • PDF

Acid Fermentation Characteristic of Food Wastes According to the Organic Loading Rate (유기물부하에 따른 음식물찌꺼기의 산발효 특성)

  • Park, Jin-Sik;Ahn, Chul-Woo;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.975-982
    • /
    • 2006
  • This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows. In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As $SCOD_{Cr}/TKN,\;SCOD_{Cr}/T-P$ of thermophilic acid fermented food wastes In organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.

Continuous Ethanol Fermentation in Air-lift Reactor by Flocculent Saccharomyces cerevisiae CA-1 (응집성 Saccharomyces cerevisiae CA-1에 의한 에탄올 연속발효)

  • Lee, Yong-Bum;Shim, Sang-Kook;Han, Myun-Soo;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.717-722
    • /
    • 1995
  • Using a flocculating Saccharomyes cerevisiae CA-1, an air-lift reactor equipped with a modified settler was used for ethanol fermentation. The effects of conditions such as aeration rate, initial glucose concentration, and dilution rate were studied using the air-lift reactor. In batch fermentation, optimum aeration rate was 0.5 vvm. In continuous fermentation, aeration rate and initial pH were fixed 0.5 vvm and 4.5, substrate concentration and dillution rate were changed 10-15% and 0.1-1.3. The maximum ethanol productivity was shown to be 20.4 g/l$\cdot $h in 10% glucose and 0.7 h$^{-1}$ dilution rate., and optimum operation condition considering the ethanol productivity and glucose utilization ratio was 0.5 h$^{-1}$ dilution rate in 10% glucose concentration.

  • PDF

A Study on the Production of Xanthan Gum by Xanthomonas campestris (Xanthomonas campestris에 의한 Xanthan gum 생산에 관한 연구)

  • 김재형;유영제이기영윤종선
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 1990
  • In the Xanthan gum fermentation by Xanthomonas campestris there are problems of the large energy consumption by long fermentation time, the mass transfer of oxygen and nutrients by high viscous fermentation broth. In this study, the media optimization and the fed batch fermentation were carried out to decrease fermentation time and increase Xanthan gum yield. The $O_2$ uptake rate (OUR) and $CO_2$ evolution rate(CER) which were obtained from the analysis of fermentation exit gas using a gas chromatograph were investigated. As a result, the fermentation time decreased at optimal assimilable nitrogen concentration but increased at poor or rich assimilable nitrogen concentration, the Xanthan gum biosynthesis was stimulated under the limited condition of assimilable nitrogen source and the optimum fermentation medium was obtained as follow; Glucose=30g / l, Peptone=8.0g / l, $K_2HPO_4=2.0g/l$, $MgS0_47H_2O=10g/l$, Sodium acetate=20g/l, Sodium pyruvate=0.5g/1. As the agitation speed and nitrogen concentration increased, the $O_2$ uptake rate and $CO_2$ evolution rate increased. The OUR and CER were 37.3mmol $O_2/\;l$ hr and 20.2 mmol $CO_2/\;L$ hr at peptone 11g / l and agitation speed 990RPM, respectively. In fed batch fermentation, the final concentration of Xanthan gum was enhanced up to 29g / l.

  • PDF

Application of Oxygen Uptake Rate Measured by a Dynamic Method for Analysis of Related Fermentation Parameters in Cyclosporin A Fermentation:Suspended and Immobilized Cell Cultures

  • Chun, Gie-Taek;Agathos, S.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1055-1060
    • /
    • 2001
  • Experimental data for the on-line estimation of cell concentration and growth rate are presented. For this purpose, we utilized the on-line calculation of the oxygen uptake rate (OUR), which was derived from a liquid phase dynamic mass balance for the oxygen during the active growth phase in cyclosporin A (CyA) fermentation. The cell yield coefficient, based on the oxygen $(Y_{x/o})$for both suspended and immobilized cells of Tolypocladium inflatum, was estimated as $1.9 gDCW/gO_2$ from a very good linear correlation between the cell mass produced and the total oxygen consumed. The calculated yield showed a good agreement with the value of $(Y_{x/o})$ generated from the correlation between the cell growth rate and the oxygen uptake rate. In addition, further experimental data are given, which were also applied to determine the specific oxygen uptake rate of T. inflatum cells during the exponential phase of CyA fermentation. A theoretical basis for the analysis of these fermentation parameters is also provided.

  • PDF

High xylitol production rate of osmophilic yeast Candida tropicalis by long-term cell-recycle fermentation in a submerged membrane bioreactor

  • Kwon, Seun-Gyu;Park, Seung-Won;Oh, Deok-Kun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.272-276
    • /
    • 2005
  • Candida tropicalis, an osmophilic strain isolated from honeycomb, produced xylitol at a maximal volumetric production rate of 3.5 g $l^{-1}$ $h^{-1}$ from an initial xylose concentration of 200 g $l^{-1}$. Even with a very high xylose concentration, e.g., 350 g $l^{-1}$, this strain produced xylitol at a moderate rate of 2.07 g $l^{-1}$ $h^{-1}$. In a fed-batch fermentation of xylose and glucose, 260 g $l^{-1}$ of xylose was added, and xylitol production was 234 g $l^{-1}$ for 48 h, corresponding to a rate of 4.88 g $l^{-1}$ $h^{-1}$. To increase the xylitol production rate, cells were recycled in a submerged membrane bioreactor with suction pressure and air sparging. In cell-recycle fermentation, the average concentration of xylitol produced per recycle round, total fermentation time, volumetric production rate, and product yield for ten rounds were 180 g $l^{-1}$, 195 h, 8.5 g $l^{-1}$ $h^{-1}$, and 85%, respectively. When cell-recycle fermentation was started with the cell mass contratrated two-fold after batch fermentation and was performed for ten recycle rounds, we achieved a very high production rate of 12 g $l^{-1}$ $h^{-1}$. The production rate and total amount of xylitol produced in cell-recycle fermentation were 3.4 and 11 times higher than in batch fermentation, respectively.

  • PDF

데침과 열수 침적의 병용 열처리와 trehalose 첨가가 오이 김치의 저장중의 효소 활성의 변화와 관능 검사에 미치는 효과

  • 이혜정
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.131-131
    • /
    • 2001
  • The enzyme activity and organoleptic properties of Korean pickled cucumber were studies for their changes during fermentation. The Korean pickled cucumber were prepared by blanching and high temperature soaking in salt solution and trehalose treatment The results shelved that the effect of combined heat and trehalose treatment significantly reduced the fermentation rate and softening rate of texture while a rather rapid fermentation was for those pleserved with salt. The effect of trehalose treatment enhenced fermentation and it was significantly reduced softening rate of texture by 2% treatment. The sensory evaluation of Korean pickled cucumber was found that combined heat treatment with blanching and hot solution had a positive effect for reduction of softening of cucumber tissue, however, odor and taste were not significantly affected. This study suggested that combined heat and trehalose treatment might have potential for affording protection against softness of cucumber tissue during the fermentation time.

  • PDF

Optimization of Switching Time from Growth to Product Formation for Maximum Productivity of Recombinant Escherichia coli Fermentation (유전자 재조합 대장균 발효의 최대 생산성을 위한 생육에서 제품 생성으로 전환시기의 최적화)

  • Anant Y. Patkar
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.394-400
    • /
    • 1990
  • Maximization of productivity of recombinant cell fermentations requires consideration of the inverse relationship between the host cell growth rate and product formation rate. The problem of maximizing a weighted performance index was solved by using optimal control theory for recombinant E. coli fermentation. Concentration of a growth inhibitor was used as a control variable to manipulate the specific growth rate, and consequently the cloned-gene expression rate. Using a simple unstructured model to describe the main characteristics of this system, theoretical analysis showed that the optimal control profile results in an initial high growth rate phase followed by a low growth rate and high product formation rate phase. Numerical calculations were done to determine optimal switching times from the growth to the production stage for two representative cases corresponding to different dependency of the product formation rate on the growth rate. For the case when product formation rate is sensitive to the specific growth rate, the optimized operation yields about 60% increase in the final product concentration compared with a simple batch fermentation.

  • PDF

Oxygen uptake Rate in Penicillin Fermentation

  • J. S. Lee;D. Y Ryu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1976.04a
    • /
    • pp.183.3-183
    • /
    • 1976
  • Assessment of oxygen uptake rate is very important to many fermentation processes, since the balance between the oxygen uptake rate and the oxygen transfer rate greatly affects the productivity of a given process.(중략)

  • PDF