• Title/Summary/Keyword: Fermentation parameters

Search Result 335, Processing Time 0.028 seconds

Effects of wilting on silage quality: a meta-analysis

  • Muhammad Ridla;Hajrian Rizqi Albarki;Sazli Tutur Risyahadi;Sukarman Sukarman
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1185-1195
    • /
    • 2024
  • Objective: This meta-analysis aimed to evaluate the impact of wilted and unwilted silage on various parameters, such as nutrient content, fermentation quality, bacterial populations, and digestibility. Methods: Thirty-six studies from Scopus were included in the database and analyzed using a random effects model in OpenMEE software. The studies were grouped into two categories: wilting silage (experiment group) and non-wilting silage (control group). Publication bias was assessed using a fail-safe number. Results: The results showed that wilting before ensiling significantly increased the levels of dry matter, water-soluble carbohydrates, neutral detergent fiber, and acid detergent fiber, compared to non-wilting silage (p<0.05). However, wilting significantly decreased dry matter losses, lactic acid, acetic acid, butyric acid, and ammonia levels (p<0.05). The pH, crude protein, and ash contents remained unaffected by the wilting process. Additionally, the meta-analysis revealed no significant differences in bacterial populations, including lactic acid bacteria, yeast, and aerobic bacteria, or in vitro dry matter digestibility between the two groups (p>0.05). Conclusion: Wilting before ensiling significantly improved silage quality by increasing dry matter and water-soluble carbohydrates, as well as reducing dry matter losses, butyric acid, and ammonia. Importantly, wilting did not have a significant impact on pH, crude protein, or in vitro dry matter digestibility.

Physicochemical and Sensory Properties of Turnip Kimchi during Fermentation (품종별 순무 김치의 이화학적ㆍ관능적 특성)

  • 김미리
    • Korean journal of food and cookery science
    • /
    • v.16 no.6
    • /
    • pp.568-576
    • /
    • 2000
  • Physicochemical and sensory properties of turnip kimchi prepared with traditional two cultivars were examined during fermentation at 0$\^{C}$ Greater decrease in pH and reducing sugar content, and higher increase of acidity' was observed in green-colored turnip kimchi than red-colored one. Lactobacilli number of green one was greater than that of red one. Antocyanin content increased upto day 45-50 and then decreased, the anthocyanin content of red one was higher than that of green one. The Hunter color L and a values increased gradually upto day 30 and then decreased, and the a value of green one was lower than that of red one. The hardness, fracturability and chewiness of turnip, determined by texture analyser, decreased during fermentation, and the values of textural parameters were smaller than those of red one. Sensory evaluation showed that the scores of 'sour odor', 'sour taste, 'sweet taste', 'savory taste, and carbonate taste' of green one were higher than those of red one, but the scores of 'hardness', 'fracturability' and 'chewiness' were lower than those of red one. Meanwhile there were no difference in 'juiciness'. Score of 'over-all acceptability' of green one was the highest with 8.8-8.9 on day 30, 40 and 45, but the score of red one was the highest with 8.5-9.1 at day 40 and 45. On the 70th day, this score of green one decreased to 2.2, but the red one maintained 6.3 on the 70th day of fermentation.

  • PDF

Optimization of a Medium for the Production of Cellulase by Bacillus subtilis NC1 Using Response Surface Methodology (반응 표면 분석법을 사용한 Bacillus subtilis NC1 유래 cellulase 생산 배지 최적화)

  • Yang, Hee-Jong;Park, Chang-Su;Yang, Ho-Yeon;Jeong, Su-Ji;Jeong, Seong-Yeop;Jeong, Do-Youn;Kang, Dae-Ook;Moon, Ja-Young;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.680-685
    • /
    • 2015
  • Previously, cellulase and xylanase producing microorganism, Bacillus subtilis NC1, was isolated from soil. Based on the 16S rRNA gene sequence and API 50 CHL test the strain was identified as Bacillus subtilis, and named as B. subtilis NC1. We cloned and sequenced the genes for cellulase and xylanase. Plus, the deduced amino acid sequences from the genes of cellulase and xylanase were determined and were also identified as glycosyl hydrolases family (GH) 5 and 30, respectively. In this study to optimize the medium parameters for cellulase production by B. subtilis NC1 the RSM (response surface methodology) based on CCD (central composite design) model was performed. Three factors, tryptone, yeast extract, and NaCl, for N or C source were investigated. The cellulase activity was measured with a carboxylmethyl cellulose (CMC) plate and the 3,5-dinitrosalicylic acid (DNS) methods. The coefficient of determination (R2) for the model was 0.960, and the probability value (p=0.0001) of the regression model was highly significant. Based on the RSM, the optimum conditions for cellulase production by B. subtilis NC1 were predicted to be tryptone of 2.5%, yeast extract of 0.5%, and NaCl of 1.0%. Through the model verification, cellulase activity of Bacillus subtilis NC1 increased from 0.5 to 0.62 U/ml (24%) compared to the original medium.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Effects of Dicarboxylic Acid as an Alternative to Antibiotic on in vitro Rumen Parameters, Milk yield and Milk Compositions in Lactating Cows (항생제 대체제로서 Dicarboxylic Acid 급여가 in vitro 반추위 발효성상, 착유우의 유량 및 유성분에 미치는 영향)

  • Nam, In-Sik;Ahn, Yong-Dae;Jeong, Ki-Hwan;Ahn, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.453-463
    • /
    • 2016
  • This study was undertaken to investigate the effects of dicarboxylic acid supplementation, as replacement antibiotics, of on in vitro ruminal parameters and milk yield and milk composition in lactating cows. in vitro treatments were 1) Con (4 g of basal diet), 2) CM (4 g of basal diet + 0.05 ml of monensin), 3) CR (4 g of basal diet + 0.1 ml of dicarboxylic acid) and in vivo treatments were 1) Con (25 kg of basal diet/head/day), and 2) CR (25 kg of basal diet + 5 g of dicarboxylic acid/head/day), respectively. A total 10 lactating dairy cows ($649{\pm}19kg$ average body weight, $99{\pm}65$ average milking days) were divided in to two groups according to mean milk yield and number of days of postpartum. The cows fed a basal diet during adaptation (2 wk) and experimental diets during the treatment periods (4 wk). In the first in vitro experiment, there were no statistical differences between treatments in pH, gas production, and ammonia-N and lactic acid concentration during incubation. However, dry matter digestibility was significantly higher in CR treatment compared to control or CM treatment (P<0.05). Total VFA was tended to higher in CR treatment than those of control and CM treatment (P>0.05). In the second experiment, milk yield was significantly higher in treatment (40.39 kg) compared to control (35.19 kg), (P<0.05). Milk composition and MUN were not changed by dietary supplementing dicarboxylic acid. Therefore the present results reporting that supplementation of dicarboxylic acid might enhance the stabilization of ruminal fermentation and increase the milk yield of lactating cows.

Effects of Bacterial Inoculants and Organic Acids on Silage Quality : Meta-analysis (미생물제제 및 유기산제제의 처리가 사일리지 품질에 미치는 영향 : 메타분석)

  • Cho, Sangbuem;Kwon, Chan Ho;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • This study was conducted to estimate and compare the effects of bacterial inoculants and organic acids on silage quality. Silage pH, lactate, acetate, lactate:acetate ratio, propionate, butyrate, water-soluble carbohydrate, crude protein, ammonia-N, neutral detergent fiber and acid detergent fiber (ADF) were used as parameters for quality analysis and a meta-analysis technique was employed to determine the effect size. As a data pool for analysis, we examined 14 research papers. Bacterial inoculants were found to elevate pH, lactate, acetate, lactate:acetate ratio, propionate and ADF contents compared to the controls (p<0.01). In contrast bacterial inoclulants decreased butyrate, water-soluble carbohydrate, crude protein and ammonia-N contents (p<0.01). In the organic acid treatments, all parameters except ADF showed higher contents than the control (p<0.01). In the comparison of effect sizes between the two treatments, significant differences were detected in butyrate, water-soluble carbohydrate, crude protein and ammonia-N (p<0.05). It may be concluded that bacterial inoculants could improve silage quality in terms of the aforementioned four parameters compared with organic acid treatments.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

Kinetic Modeling of the Enzymatic Hydrolysis of $\alpha$-Cellulose at High Sugar Concentration (순수 섬유소에 대한 고농도 당화공정의 동력학적 모사)

  • 오경근;정용섭홍석인
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • For the effective ethanol fermentation, the high concentration of sugar as the substrate of microbial fermentation is required. The most important reason in the inefficient hydrolysis; the easy deactivation of enzyme by temperature or shear stress and the severe inhibition effects of its products. In our work, we comprehended the kinetic characteristics of cellulose and ${\beta}$-glucosidase in the progress of hydrolysis, and observed the potential inhibitory effects of the hydrolyzed products and the deactivation of enzymes. We also tried to present the kinetic model of enzymatic hydrolysis of cellulose, which is applicable to process at the high concentration of sugar. Cellulase and ,${\beta}$-glucosidase exhibit diverse kinetic behaviors. At a level of only 5g/$\ell$ of glucose, the ${\beta}$-glucosidase activity was reduced by more than 70%. This result means that ${\beta}$-glucosldase was the most severely inhibited by glucose. Also at l0g/$\ell$ of cellobiose, the cellulose lost approximately 70% of its activity. ${\beta}$-glucosldase was more sensitive to deactivation than cellulose by about 1.6 times. The comprehensive kinetic model in the range of confidence was obtained and the agreement between the model prediction and the experimental data was reasonably good, testifying to the validity of the model equations used and the associated parameters.

  • PDF

Effects of K-Sorbate, Salt-Fermented Fish and $CaCl_2$ Addition on the Texture Changes of Chinese Cabbage During Kimchi Fermentation (보존료, 젓갈, $CaCl_2$ 첨가가 김치발효중 배추잎의 조직감변화에 미치는 영향)

  • Hwang, In-Ju;Yoon, Eu-Jeong;Hwang, Seong-Yun;Lee, Cherl-Ho
    • Journal of the Korean Society of Food Culture
    • /
    • v.3 no.3
    • /
    • pp.309-317
    • /
    • 1988
  • The effects of $CaCl_2$, K-sorbate, and fermented fish sauces and blanching on the texture of Chinese cabbage of Kimchi were evaluated. The addition of salt-fermented shrimp or salt-fermented anchovy accelerated the pH reduction, acidity increase and reducing sugar consumption, but K-sorbate, Ca-chloride and blanching suppressed the ripening process of Kimchi. The latter retarded the softening rate of Chinese cabbage during Kimchi fermentation, as demonstrated by the cutting force, compression force, recovered height and work ratio. The sensory evaluation confirmed the results of instrumental texture measurments. The instrumental measurements, i.e. pH, acidity cutting thickness, cutting force and compression test parameters, showed acidity acidity was calculated as % lactic acid attributes, i.e. the preferences for taste, appearance and texture, and the level of crispiness, hardness, chewiness and fibrousness. The pH of Kimchi was appeared to be an important quality parameter, whiih had significant correlations with the taste, appearance, chewiness, hardness, fibrousness and crispiness.

  • PDF

Effect of aeration on the physicochemical characteristics of livestock feces compost during composting period (퇴비화과정 중 공기공급 여부가 가축분뇨 퇴비의 물리화학적 특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Kang, Ho;Kim, Tai-ll;Park, Chi-Ho;Yang, Chang-Buem
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.57-65
    • /
    • 2003
  • Livestock farming is one of several industries that have faced criticism because of its impact on the water quality, soil contamination and air pollution. The livestock feces can cause some environmental problems. The best way to treat the feces is to recycle the manure as an organic fertilizer after fermentation or composting. This study was carried out to investigate the characteristics of composting of manure in several composting conditions. The variations of physicochemical characteristics of each compost piles containing different level of air volume were analyzed throughout the composting period. In this study, pigs manure compost piles mixed with saw dust were composted in 110L of laboratory scale plastic vessels and $1.5m^3$ of small cubic wooden composting vessels for 60days. The compost piles were ventilated continuously with air pump throughout the composting duration. The air volume ventilated into the piles was regulated by chock valve attached to the inlet pipe. The ventilation level was adjusted by 20, 50, 100, 150 and $200L/m^3/mim$, respectively. The highest temperature of the compost increased to $72^{\circ}C$ during composting period. After 20days from beginning of fermentation, concentrations of $H_2S$, $CH_3SH$, DMS and DMDS generated from compost piles were 29, 16, 6 and 5ppb in blow in state compost pile, conversely, in blow out state compost pile, the parameters were 32, 24, 15 and 14ppb, respectively.

  • PDF