• Title/Summary/Keyword: Fenton Oxidation

Search Result 164, Processing Time 0.026 seconds

The Hepatotprotective and Antioxidative Effects of Onion (Allium cepa) Extracts in Rat Hepatocyte Primary Culture (양파(Allium cepa) 추출물의 간보호 및 항산화 효과)

  • Rhim, Tae-Jin;Lim, Sang-Cheol
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • v.18 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • The objectives of present study were to investigate the hepatoprotective and antioxidative effects of onion extracts. Primary cultures of rat hepatocytes were incubated with 1.5 mM tert-butyl hydroperoxide(t-BHP), potent oxidizing agent for liver injury for 1 hr in the presence or absence of various concentrations (0, 0.01, 0.05, 0.1 or 0.3 mg/ml) of onion extract. Cytotoxicity and cell viability were determined by measuring glutamic oxaloacetic transaminase(GOT) activity, lactate dehydrogenase(LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) value. Lipid peroxidation was evaluated using thiobarbituric acid reactive substances(TBARS) assay. Effects on antioxidant system were determined by measuring catalase, glutathione peroxidase(GSH-Px), glutathione reductase(GSH-Rd) activities as well as DNA strand breaking assay. Incubation with t-BHP alone increased GOT and LDH activities and TBARS concentration but decreased MTT reduction. Onion extracts at the concentration of 0.05 mg/ml began to decrease GOT and LDH activities induced by 1.5 mM t-BHP. Decreased MTT reduction began to be increased by onion extract at the concentration of 0.01 mg/ml. Onion extracts at the concentration of 0.01 mg/ml began to decrease TBARS concentration induced by t-BHP. Taken together, onion extracts prevented t-BHP-induced hepatocyte injury and lipid peroxidation. Catalase, GSH-Px and GSH-Rd activities of hepatocytes were significantly decreased by 1.5 mM t-BHP for 1 hr incubation. Onion extracts, on the other hand, at the concentration of 0.1 mg/ml began to prevent t-BHP-induced decrease in catalase, GSH-Px and GSH-Rd activities. Onion extracts prevented hydroxyl radical-induced single-strand breakage in dose-dependent manner when plasmid DNA was incubated with various concentrations of onion extracts in the presence of Fenton regents producing hydroxyl radical. These results demonstrate that onion extracts suppressed t-BHP-induced cytoctoxicity, decreased viability and lipid peroxidation and increased GSH-Px, GSH-Rd and catalase activities. Thus hepatoprotective and antioxidant effects of onion extract seem to be due to, at least in part, the increase in antioxidant enzyme activities as well as prevention from hydroxyl radical-induced oxidation, followed by inhibition in lipid peroxidation.

  • PDF

The Hepatotprotective and Antioxidative Effects of Onion (Allium cepa) Extracts in Rat Hepatocyte Primary Culture (양파(Allium cepa) 추출물의 간보호 및 항산화 효과)

  • Lim Sang-Cheol;Rhim Tae-Jin
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.470-478
    • /
    • 2005
  • The objective of present study was to investigate the hepatoprotective and antioxidative effects of onion extracts. Primary cultures of rat hepatocytes were incubated with 1.5 mM tort-butyl hydroperoxide(t-BHP), potent oxidizing agent to liver, for 1 hr in the presence or absence of various concentrations (0, 0.01, 0.05, 0.1 or 0.3 mg/ml) of onion extract. Incubation with t-BHP increased glutamic oxaloacetic transaminase(GOT) and lactate dehydrogenase(LDH) acitivities and thiobarbituric acid reactive substances(TBARS) concentration but decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) reduction. Onion extracts at the concentration of 0.05 mg/ml decreased t-BHP-induced GOT and LDH activities. Onion extract at the concentration of 0.1 mg/ml increased t-BHP-induced MTT reduction. Onion extract at the concentration of 0.01 mg/ml decreased t-BHP-induced TBARS concentration. Taken together, onion extracts prevented t-BHP-induced hepatocyte injury and lipid peroxidation. Catalase, glutathione peroxidase(GSH-Px) and glutathione reductase(GSH-Rd) activities of hepatocytes were significantly decreased by t-BHP. Onion extracts at the concentration of 0.1 mg/ml prevented t-BHP-induced decrease in catalase, GSH-Px and GSH-Rd activities. Onion extracts prevented hydroxyl radical-induced single-strand breakage in dose-dependent manner when plasmid DNA was incubated with various concentrations of onion extracts in the presence of Fenton reagents producing hydroxyl radical. These results demonstrate that onion extracts suppressed t-BHP-induced cytoctoxicity, decreased viability and lipid peroxidation and increased GSH-Px, GSH-Rd and catalase activities. Thus hepatoprotective and antioxidant effects of onion extract seem to be due to, at least in part, the increase in antioxidant enzyme activities as well as prevention from hydroxyl radical-induced oxidation, followed by inhibition of lipid peroxidation.

Removal of Algogenic Organic Matter in Drinking Water Treatment Process (정수처리공정에서 조류유래 유기물질의 제거)

  • Park, Se-Jin;Cha, Il-Kwon;Yoon, Tai-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • Algae causes not only the eutrophication of lake, but also the deterioration of drinking water process. Especially, algogenic organic matters(AOM) are assumed as disinfection by-products(DBPs) precursors like humic and fulvic acids. In this study, it was investigated the characteristics changes of algogenic organic matter(AOM) by prechlorination and coagulation treatment. Evaluation of enhanced coagulation and applicability of UV oxidation process were also evaluated as the drinking water treatment system for the eutrophicated water source. prechlorination was effective process for algae removal but caused releasing of dissolved organic matter(DOC) into water due to the destruction of algae's cell. In coagulation treatment with Fe(III) coagulant, reaction pH is an important factor for the removal of AOM and triholomathanes(THMs). At pH 5, removal efficiency of DOC and THMs were dramatically improved by 50% and 28%, respectively, in comparison with the conventional coagulation treatment at about pH 7. Photo-Fenton($UV/H_2O_2/Fe^{3+}$) process among the UV oxidations is the most effective system to remove AOM, but its removal efficiency was lower than that of enhanced coagulation treatment at pH 5.

Study on characteristics of specific hazardous substances in the industrial wastewater effluent (사업장 방류수 중 특정수질유해물질 배출 특성 연구)

  • Kim, Seungho;Choi, Youngseop;Kim, Yunhee;Kim, Jongmin;Chang, Gilsik;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.114-125
    • /
    • 2016
  • In this study, 165 wastewater discharge facilities in 10 business types were investigated with regard to 24 specific hazardous substances that included heavy metals, VOCs, CN, and phenol in the Gwangju city. Cu in the range from from 0.008 to 35.420 mg/L was detected in all business types and the detection rate was 46.8 %. Other heavy metals, such as Cd, As, Hg, Pb, and Cr+6 were detected as well. However, their detection rates ranged between 0.6 and 1.8 %. CN and phenol were detected in one and five facilities, respectively. 12 species of VOCs were detected: chloroform 80.6 % (0.42 to 81.60 μg/L), benzene 16.4 % (1.49 to 3.31 μg/L), trichloroethylene 11.5 % (1.78 to 6.02 μg/L), 1,1-dichloroethylene 10.3 % (1.23 to 5.89 μg/L), and dichloromethane 8.5 % (0.28 to 968.86 μg/L) in the detection rate order. The concentration of VOCs was detected in trace amounts, except for dichloromethane that exceeded the effluent quality standard in three business types, namely, metal manufacturing, food industry, and car washing facility. Chloroform was detected in all business types, where 24.88 μg/L were detected in the laundry business and 53.41 μg/L in the water supply business; the mean concentration of chloroform in these two business types was higher than elsewhere. Therefore, for the disposal of non-degradable specific hazardous substances in industrial wastewater, it is necessary to introduce physical and chemical processes, such as activated carbon adsorption, fenton oxidation, ozone treatment, as well as photocatalyst and the UV radiation.