• Title/Summary/Keyword: Fence flow

Search Result 58, Processing Time 0.022 seconds

Shelter Effect of Porous Fences on the Saltation of Sand Particles in an Atmospheric Boundary Layer (방풍펜스가 후방에 놓인 야적모래입자의 비산에 미치는 영향에 관한 연구)

  • Park, Ki-Chul;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1175-1184
    • /
    • 2000
  • Effects of porous wind fences on the wind erosion of particles from a triangular sand pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Flow visualization was carried out to investigate the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the particle size, fence porosity $\varepsilon$ and the height of sand pile. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity $\varepsilon$=30% was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles. With increasing the sand particle diamter, the threshold velocity was also increased. When the height of sand pile is lower than the fence height, threshold velocity is enhanced.

Analysis of Effectiveness of Tandem Oil Fences (이중유벽의 유효성에 관한 해석)

  • Han Dong Gi;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • To assess the oil-containment effectiveness of tandem oil fences placed in currents, the movement of oil droplets in the fore and aft region of the fences is investigated by experimental and numerical methods. The effect of the flexibility of the fence skirt of single fence on the fence effectiveness is also investigated. Laboratory experiment is conducted to trace the path of a spherical solid particle of equivalent density to an oil droplet which was released in a uniform stream ahead of a model oil fence. Depending upon the releasing position and the flow condition there, it was observed that the particle floated up to the free surface, collided with the fence, or escaped below the fence. By analyzing the droplet trajectories, a numerical method is developed to predict the region ahead of the fore fence where an oil droplet initiating its motion eventually escapes beneath the fence. The effect of the relative sizes of the drafts of the fore and aft fences, the fence separation, and the bottom depth of the sea bed on the effectiveness of tandem fences is investigated using the numerically obtained trajectories of oil droplets.

  • PDF

Effect of hanging-type sand fence on characteristics of wind-sand flow fields

  • Cheng, Jian-jun;Lei, Jia-qiang;Li, Sheng-yu;Wang, Hai-feng
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.555-571
    • /
    • 2016
  • A hanging-type sand-retaining wall is a very common sand-blocking fence structure used to prevent sand movement. This type of wall is widely used along the Qinghai-Tibet and Gobi desert railways in Xinjiang, Western China. To analyze the characteristics of wind-sand flow fields under the effect of such a sand fence structure, a wind tunnel test and a field test were carried out. The wind tunnel test showed the zoning characteristics of the flow fields under the effect of the hanging-type sand-retaining wall, and the field test provided the sediment transport data for effective wind-proof interval and the sand resistance data in the front and behind the sand-retaining wall. The consistency of the wind-sand flow fields with the spatial distribution characteristic of wind-carried sand motion was verified by the correspondences of the acceleration zone in the flow field and the negative elevation points of the percentage variations of the sand collection rate. The spatial distribution characteristic of the field sand collection data further showed the spatial structural characteristic of the sandy air currents under the action of the hanging-type sand-retaining wall and the sand resistance characteristic of the sand-retaining wall. This systematic study on the wind-sand flow fields under the control of the hanging-type sand-retaining wall provides a theoretical basis for the rational layout of sand control engineering systems and the efficient utilization of a hanging-type sand-retaining wall.

Development of an Efficient Calculation Method of Pressure Acting on a Bluff Body and the Deformation of Flexible Oil Fences in Currents (뭉뚝한 물체에 작용하는 압력의 효율적인 계산법 개발과 조류중에서의 유연한 유벽의 변형)

  • Kang, Kwan Hyoung;Lee, Choung Mook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.22-31
    • /
    • 1996
  • An efficient calculation method of pressure acting on a bluff body is developed. The method is applied to assess the containment capability of an oil fence, considering skirt deformation in current. The pressure on the frontal side of the oil fence is determined by analyzing the potential flow, substituting the wake region as a rigid body which has its boundary at the closed separation streamlines. The pressure at the downstream side of the fence, the so called base pressure, is obtained from the existing experimental results. To verify the calculation method, pressure drag of some bluff bodies in an infinite-fluid medium is calculated, which shows good agreement with the experimental results. The deformed shape of the oil fence is obtained by solving, iteratively, the coupled equations governing the flow field and the deformation of the oil fence, respectively. The deformed shape and the decrease of draft of oil fences with different ballast mass in various current conditions are investigated.

  • PDF

Developing the flow quality in an wing-body junction flow by the optimizing method (최적화 기법을 이용한 일반적인 날개 형상에서의 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.303-307
    • /
    • 2009
  • Secondary flow losses can be as high as $30{\sim}50%$ of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and optimizes the shape of leading-edge fence with the shape factors, such as the installed height, length, width, and thickness of the fence as the design variables. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure loss coefficient was improved about 7.5 % than the baseline case.

  • PDF

Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge (블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어)

  • Kim, Jeong-Rae;Moon, Young-June;Chung, Jin-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.

Improvement of the Aerothermal Environment for a 90° Turning Duct by an Endwall Boundary Layer Fence (90° 곡관에서의 경계층 판을 이용한 열유동 환경 개선)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • An endwall boundary layer fence technique was adapted to improve the aerothermal environment of a gas turbine passage. The shape optimization of the fence was performed to maximize the improvement. The turbine passage was simulated by a $90^{\circ}$ turning duct (ReD=360,000). The main purpose of the present investigation was to focus on finding a endwall boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. Anothor objective function was to minimize the area on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerodynamic environment can be achieved through the application of the fence. Improvement of the thermal environment was smaller than that of the aerodynamic enviroment.

Drag Reduction by Fence of a Square Prism near Plane Wall (벽면근처에 놓인 정방형주의 펜스에 의한 항력저감)

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2567-2572
    • /
    • 2007
  • The suppression of fluid force acting on a square prism near plane wall was studied by attaching fences on the corners of the prism. The height of the fence was 10% of the square width and the range of Reynolds number considered was Re=$2.0{\times}10^4$. The experimental parameters were the attaching position and numbers of fences, the space ratios G/B(G/B=0.1${\sim}$1.2) between prism and plane wall. The average drag coefficients were increased and the average lift coefficients were decreased and increased with the space ratios toward plane wall. The drag of the prism was reduced average 7.6% with the space ratios by attaching the normal fence at the rear and upper corner and the horizontal normal fence at the rear and lower corner on the prism. In this case, the separated flow at the front and upper corner was reattached on the upper side of the prism and the vortex streets between the prism and plane wall were appeared more slowly than that of prism without fences.

  • PDF

Effects of the Inlet Boundary Layer Thickness and the Boundary Layer Fence on the Heat Transfer Chracteristics in a Turbine Cascade (입구경계층 두께와 경계층 펜스가 터빈 캐스케이드내 열전달 특서에 미치는 영향)

  • Jeong, J.S.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.765-770
    • /
    • 2001
  • The objective of the present study is to investigate the effects of the various inlet boundary layer thickness on convective heat transfer distribution in a turbine cascade endwall and blade suction surface. In addition, the proper height of the boundary layer fences for various inlet boundary layer thickness were applied to turbine cascade endwall in order to reduce the secondary flow, and to verify its influence on the heat transfer process within the turbine cascade. Convective heat transfer distributions on the experimental regions were measured by the image processing system. The results show that heat transfer coefficients on the blade suction surface were increased with an augmentation of inlet boundary layer thickness. However, in a turbine cascade endwall, magnitude of heat transfer coefficients did not change with variation of inlet boundary layer thickness. The results also present that the boundary layer fence is effective in reducing heat transfer on the suction surface. On the other hand, in the endwall region, boundary layer fence brought about the subsidiary heat transfer increment.

  • PDF

Wind-Tunnel Simulation of Windbreaks to Control Windblown Dusts in the Atmospheric Boundary layer (대기 경계층내에서 바람에 의해 발생되는 부유 물질 제어를 위한 Windbreaks의 풍동 시뮬레이션)

  • Kang, Kun
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.29-40
    • /
    • 1995
  • Transport rate of windblown dusts such as soil, sand, snow is proportionate to $U*_^3 and U_*$, friction velocity, approximately to flow velocity of ink Therefore, through measurement and the flow velocity of wind, it turned out that, considering different velocity distributions caused by downstream distance and porosity percent, windbreaks with appropriate porosity rate to the Protection area should be chosen for the optimal fence effect. In the economic respects better are fences with gap of 20%~30%. Among the windbreaks to have the optimal fence effect.

  • PDF