• Title/Summary/Keyword: Femtosecond laser

Search Result 238, Processing Time 0.088 seconds

Analyses of Laser Induced Demagnetization and Remagnetization in Carbon Doped FePt Thin Films (탄소가 도핑 된 FePt 박막에서의 펨토 초 펄스 레이저에 의한 자기 소거와 회복 분석)

  • Song, Hyon-Seok;Ko, Hyun Seok;Hong, Jung-Il;Shin, Sung-Chul;Lee, Kyeong-Dong;Park, Byong-Guk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.39-42
    • /
    • 2015
  • After preparing carbon-doped FePt films by dc magnetron sputtering, we observed ultrafast demagnetization and its recovery by means of a time-resolved magneto-optical Kerr effect technique. We confirm that the degree of $L1_0$ ordering is decreased and coercivity is changed, as the carbon concentration increases. All samples are demagnetized within ~5 ps after the femtosecond laser pulse heated the sample. Interestingly, ultrafast relaxation time, which indicates fast magnetization recovery, increases as the carbon concentration increases due to the low spin-orbit coupling of carbon.

Temporal characterization of femtosecond laser pulses using spectral phase interferometry for direct electric-field reconstuction (주파수 위상 간섭계를 이용한 펨토초 레이저 펄스의 시간적 특성연구)

  • 강용훈;홍경한;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • Spectral phase interferometry for direct electric-field reconstruction (SPIDER) was fabricated and used to characterize pulses from a Ti:sapphire oscillator. In the SPIDER apparatus, two replicas of the input pulse were generated with a time delay of 200 fs and were upconverted by use of sum-frequency generation with a strongly chirped pulse using a 8-cm-long SFIO glass block at a 30-11m-thick type II BBO (p-BaBz04) crystal. The resulting interferogram was recorded with a UV-enhanced CCD array in the spectrometer. The spectral phase was retrieved by SPIDER algorithm in combination with independently measured pulse spectrum and the corresponding temporal intensity profile was reconstructed with a duration of 19 fs. As an independent cross-check of the accuracy of the method, we compared the interferometric autocorrelation (lAC) signal calculated from the SPIDER data with a separately measured lAC. The conventional, but unjustified, method of fitting a sechz pulse to the autocorrelation deceivingly yielded a pulse duration of 15 fs. This systematic underestimation of the pulse duration affirms the need for a complete characterization method. From the consideration in this paper, we concluded that the SPIDER could provide an accurate characterization of femtosecond pulses. ulses.

  • PDF

A Feasibility Study on the Infrastructure Project of Femto Fusion Technology (펨토 융합기술 기반구축사업 타당성 분석 연구)

  • Kim, Dae Ho;Kim, Tae Hyung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The femto fusion technology refers to not only the technology for femtosecond($10^{-15}$ second) laser and but also the fusion technology of its application. This technology is comparable to the nano technology, the extreme technology on the space, and is of extreme time-domain technology. Now, we need to develop the hyperfine and high-precision femto fusion process technology which allows to miniaturize and highly integrate the products of mobile, semiconductor and display industries, the national main focusing growth industries. However, The femtosecond laser fabrication technology is essential in the development of fusion technology, but only a few of domestic researchers can handle the former. Under this condition, our government plans to develop the "femto fusion technology infrastructure project" as one of the ICT research infrastructure. So the purpose of this study is to analyze the feasibility of this project. We applied AHP(analytic hierarchy process) for this study. The final result shows that all the repondent's score is over 0.55 and the aggregated score is 0.846. And as a consequence, we can conclude that to do this project is feasible.

  • PDF

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.

Generation of Femtosecond Pulses in a Passively Mode-Locked 100 MHz Cr4+:YAG Laser (수동 모드 잠금된 100 MHz Cr4+:YAG 레이저에서의 펨토초 펄스 발생)

  • Cho, Won-Bae;Rotermund Fabian;Kim, Jong-Doo;Jeon, Min-Yong;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.535-541
    • /
    • 2005
  • We report on the development of a passively mode-locked near-infrared femtosecond laser with Cr:YAG crystal that operates near room temperature. The laser wavelength could easily be tuned by using only the internal prism pair over 110 nm from 1400 nm to 1510 nm in cw and over about 30 nm in mode-locked operation, respectively Maximum cw output powers of 810 mW were obtained with $1.5 \%$ output coupler for absorbed pump powers of 7.6 W. For compensation of the internal group velocity dispersion, an IR graded prism pair was used. The Cr:YAG laser delivered nearly Fourier-transform limited pulses with a pulse duration as short as 64 fs at 100 MHz repetition rate. In the mode-locked regime, the laser was operating at 1510 nm with a spectral bandwidth of 44 nm. In order to avoid unstable mode-locking and power instabilities, self-built tubes were inserted into the beam path in the resonator and purged with N2 gas. Finally, output powers of the Cr:YAG laser were optimized to 250 mW fer long time stable mode-locked operation.

Kilohertz Gain-Switched Ti:sapphire Laser Operation and Femtosecond Chirped-Pulse Regenerative Amplification (KHz 반복률에서의 Ti:sapphire 이득 스위칭 레이저 발진과 펨토초 처프펄스 재생 증폭)

  • Lee, Yong-In;Ahn, Yeong-Hwan;Lee, Sang-Min;Seo, Min-Ah;Kim, Dai-Sik;Rotermund, Fabian
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.556-563
    • /
    • 2006
  • We present a comprehensive study of a chirped pulse Ti:sapphire regenerative amplifier system operating at 1 kHz. Main constituents of the system are described in detail. The amplifier stage was first converted to a repetition rate-tunable kHz gain-switched nanosecond Ti:sapphire laser. Operation characteristics at different repetition rates such as build-up times of laser pulses, pump power-dependent output powers and pulse durations, damage thresholds, and tunability ranges were studied. Based on the results achieved, the switching time of the Pocket's cell used and the round trip numbers in the regenerative amplifier were optimized at 1 kHz. The output pulses with a pulse width of 50fs from a home-made Ken lens mode-locked Ti:sapphire oscillator were used as seed pulses. The pulses were expanded to 120ps in a grating stretcher prior to coupling into the 3-mirror amplifier cavity. After amplification and recompression, a stable 1kHz Ti:sapphire regenerative amplifier system, which delivers 85-fs, $320-{\mu}J$ pulses, was fully constructed.

Revealing the Spatial Distribution of Inorganic Elements in Rice Grains

  • Jeon, Ji Suk;Choi, Sung Hwa;Lee, Ji Yeon;Kim, Ji A;Yang, Young Mi;Song, Eun Ji;Kim, Jae Sung;Yang, Jung Seok;Kim, Kyong Su;Yoo, Jong Hyun;Kim, Hai Dong;Park, Kyung Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3289-3293
    • /
    • 2014
  • Femtosecond laser ablation (fs LA) was used in this study to identify pollution by heavy metals and the distribution of elemental nutrients at different rice milling ratios. Polished rice (degrees of milling of 3, 5, 7, 9, and 11) was collected from major Korean supermarkets and one sample thereof was selected. An internal quality control experiment was conducted using a rice flour certified reference material from the Korea Research Institute of Standards and Science (KRISS CRM) for the evaluation of the efficacy. To assess the effectiveness of the analysis method, the reliability was validated using a food analysis performance assessment scheme (FAPAS), with chili powder serving as an external quality control. The results of the analysis of the inorganic elements Ti, Ca, Al, Fe and Mn in white and brown rice with degrees of milling of 3, 5, 7, 9 and 11 using ICP-MS, ICP-OES and AAS revealed contents of 0.40, 49.2, 2.43, 5.36 and 10.3 mg/kg in white rice and 0.59, 78.0, 7.52, 11.0 and 18.5 mg/kg in brown rice, respectively. Among the elements, there were remarkable differences in the measured contents. By comparing the contents of the elements at different degrees of milling, Ti, Co, As, Ca, Al, Cu, Fe, and Mn were determined to be distributed on the surface of the rice grains, whereas the contents of Cd and Pb increased toward the center of the rice grains, and Si was evenly distributed. After the quantitative analysis of rice samples polished to different degrees of milling, Ca and Al, which were contained in large amounts, and Si were analyzed with specificity by fs LA. The results show that Ca and Al were distributed in the rice husk (protective covering of rice) and Si was distributed in all parts of the rice.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.