• Title/Summary/Keyword: Femtosecond Laser Pulses

Search Result 85, Processing Time 0.028 seconds

Femtosecond Mid-IR Cr:ZnS Laser with Transmitting Graphene-ZnSe Saturable Absorber

  • Won Bae Cho;Ji Eun Bae;Seong Cheol Lee;Nosoung Myoung;Fabian Rotermund
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.738-744
    • /
    • 2023
  • Graphene-based saturable absorbers (SAs) are widely used as laser mode-lockers at various laser oscillators. In particular, transmission-type graphene-SAs with ultrabroad spectral coverage are typically manufactured on transparent substrates with low nonlinearity to minimize the effects on the oscillators. Here, we developed two types of transmitting graphene SAs based on CaF2 and ZnSe. Using the graphene-SA based on CaF2, a passively mode-locked mid-infrared Cr:ZnS laser delivers relatively long 540 fs pulses with a maximum output power of up to 760 mW. In the negative net cavity dispersion regime, the pulse width was not reduced further by inhomogeneous group delay dispersion (GDD) compensation. In the same laser cavity, we replaced only the graphene-SA based on CaF2 with the SA based on ZnSe. Due to the additional self-phase modulation effect induced by the ZnSe substrate with high nonlinearity, the stably mode-locked Cr:ZnS laser produced Fourier transform-limited ~130 fs near 2,340 nm. In the stable single-pulse operation regime, average output powers up to 635 mW at 234 MHz repetition rates were achieved. To our knowledge, this is the first attempt to achieve shorter pulse widths from a polycrystalline Cr:ZnS laser by utilizing the graphene deposited on the substrate with high nonlinearity.

Optical memory in photopolymers and rare-earth ion-doped glasses using two-photon absorption (포토폴리머와 희토류이온이 첨가된 유리에서의 이광자흡수를 이용한 광정보저장)

  • Lee, Myeong-Kyu;Kim, Eun-Kyoung;Trinh Minh-Tuan;Lim, Ki-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.75-80
    • /
    • 2006
  • We studied feasibility of three-dimensional optical memory by utilizing femtosecond laser-induced changes of transmission in photopolymers and photoluminescence in Eu and Sm ion doped sodium borate glasses. We produced transmission change by two photon absorption and obtained sub-Um size spots in photopolymers using 780 nm modelocked Ti-sapphire laser pulses. We also changed valence state of Eu and Sm ions by multi-photon absorption and achieved $\~{\mu}m$ sized spot formation in Sm-doped glasses.

Characterization of Supercontinuum Generation as a function of Pump Wavelength and Intensity in Photonic Crystal Fiber (광자 결정 광섬유에서 펌프광원의 파장과 입력파워에 따른 초 광대역 광원 발생의 특성)

  • Kim, Jong-Doo;Yee, Ki-Ju;Jeon, Min-Yong;Ahn, Seong-Joon;Choi, Yong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.490-493
    • /
    • 2005
  • We have experimentally studied supercontinuum generation in a photonic crystal fiber as a function of pump wavelength and intensity with 100 fs pulsewidth. A supercontinuum over 750 nm spectral width with amplitude variation less than 10 dB has been achieved. It was generated by coupling femtosecond pulses from a mode-locked Ti:Sapphire laser into a 2 m long photonic crystal fiber. Adjusting the parameters of the pump source, it was also possible to control different spectral features of the supercontinuum radiation.

Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure (Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성)

  • Oh, Kwang H.;Jeong, Hyejeong;Chi, Eun-Ok;Kim, Ji Chan;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

Supercontinuum Generation with Femtosecond Pulses and Photonic Crystal Fibers (펨토초 펄스와 광결정 광섬유를 이용한 초 연속스펙트럼의 발생)

  • Choi, Hyoung-Gye;Kim, So-An;Kee, Chul-Sik;Sung, Jae-Hee;Yu, Tae-Jun;Ko, Do-Kyeong;Lee, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2007
  • The characteristics of the supercontinuum generated in photonic crystal fibers were investigated by using the generalized nonlinear $Schr\"{o}dinger$ equation and the split-step Fourier method. Based on the simulated results, we generated the supercontinuum spectrum with the flatness of ${\pm}4dB$ in the wavelength range of 650 to 900 nm by employing a 200-fs pulse of Ti:sapphire laser and a commercial photonic crystal fiber.