• Title/Summary/Keyword: Femtosecond

Search Result 365, Processing Time 0.024 seconds

Femtosecond Laser Lithography for Maskless PR Patterning (펨토초 레이저를 이용한 미세 PR 패터닝)

  • Sohn, Ik-Bu;Ko, Myeong-Jin;Kim, Young Seop;Noh, Young-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

Microstructuring of Optical Fibers Using a Femtosecond Laser

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul;Ryu, Jin-Chang;Kim, Jin-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • Laser ablation with femtosecond lasers is highly promising for microfabrication of materials. Also, the high peak power of femtosecond lasers could induce a multiphoton absorption to ablate transparent materials. Similar results have also been were obtained in the case of optical fibers. In this paper, we present our experimental results of femtosecond laser microstructuring of optical fiber and its applications to microelectronic components and fiber optic devices. Finally, we directly produced micro holes with femtosecond laser pulses in a single step by moving an optical fiber in a preprogrammed structure. When water was introduced into a hole drilled from the bottom surface of the optical fiber, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. We have presented circular and rectangular-shaped holes in optical fiber.

Simulation of Laser Micro Patterning Process Using FEM (유한요소법을 이용한 레이저 미세 패터닝 공정 해석)

  • Lee J. H.;Kim B. H.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.54-58
    • /
    • 2005
  • Femtosecond laser is the latest generation pulsed laser delivering shortest pulses. Any solid materials can be machined by it. Femtosecond laser micromachining allows highest precision and minimal heat influence within the workpiece. But due to the complex physical phenomena between the laser beam and the workpiece materials, it is very difficult to determine the optimal process conditions in the femtosecond laser micromachining. In this study, a method to simulate the femtosecond laser micromachining process was proposed. And femtosecond laser micro patterning processes of chromium thin film are simulated by the proposed method using a commercial FE code, LS-Dyna. Simulation results were compared with those of experiments.

  • PDF

Space-selective Precipitation and Control of Functional Crystals in Glasses by a Femtosecond Laser

  • Qiu, Jianrong;Zhu, Bin;Dai, Ye
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.91-97
    • /
    • 2007
  • Femtosecond laser micro-processing received much attention in the past decade. The nature of ultra-short light-matter interaction permits femtosecond laser to overcome the diffraction limit and realize precise micro-processing. The ultrahigh light intensity of the femtosecond laser allows sapece-selective microscopic modifications to materials based on multiphoton processes. In this paper, we review our recent research development on space-selective precipitation and control of functional crystals in glasses by an infrared femtosecond laser. The technique will open new possibilities in the fabrication of micro-optical components with various optical functions.

  • PDF

Dynamic Response Behavior of Femtosecond Laser-Annealed Indium Zinc Oxide Thin-Film Transistors

  • Shan, Fei;Kim, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2353-2358
    • /
    • 2017
  • A femtosecond laser pre-annealing process based on indium zinc oxide (IZO) thin-film transistors (TFTs) is fabricated. We demonstrate a stable pre-annealing process to analyze surface structure change of thin films, and we maintain electrical stability and improve electrical performance. Furthermore, dynamic electrical characteristics of the IZO TFTs were investigated. Femtosecond laser pre-annealing process-based IZO TFTs exhibit a field-effect mobility of $3.75cm^2/Vs$, an $I_{on}/I_{off}$ ratio of $1.77{\times}10^5$, a threshold voltage of 1.13 V, and a subthreshold swing of 1.21 V/dec. And the IZO-based inverter shows a fast switching behavior response. From this study, IZO TFTs from using the femtosecond laser annealing technique were found to strongly affect the electrical performance and charge transport dynamics in electronic devices.

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

High-Speed Femtosecond Laser Micromachining with a Scanner (스캐너를 이용한 고속 펨토초 레이저 가공 기술)

  • Sohn, Ik-Bu;Choi, Sung-Chul;Noh, Young-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2006
  • We report experimental results on the high-speed micromachining using a femtosecond laser (800 nm, 130 fs, 1kHz) and galvanometer scanner system (Raylase, Germany). Periodic hole drilling of silicon and glass with the scan speed of 1-20 mm/s is demonstrated. Finally, we demonstrate the utility of the femtosecond laser application to ITO patterning by using a high-speed femtosecond laser scanner system.

  • PDF

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

Ultrafast Femtosecond Lasers: Fundamentals and Applications (펨토초 레이저의 원리 및 응용)

  • Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Man;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.7-16
    • /
    • 2010
  • Physical fundamentals of ultrashort femtosecond lasers are addressed along with emerging applications for precision manufacturing and metrology. Femtosecond lasers emit short pulses whose temporal width is in the range of less than a picosecond to a few femtoseconds, thereby enabling extremely high peak-power machining with less thermal damages. Besides, the broad spectral bandwidth of femtosecond lasers constructed in the form of frequency comb permits absolute distance measurements leading to ultraprecision positioning control and dimensional metrology.

Micromachined Properties of a polyimide by a femtosecond laser (펨토초 레이저에 의한 폴리이마이드 가공 특성)

  • Min, Chul-Ki;Lee, Man-Seop
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.20-25
    • /
    • 2008
  • Polyimide is one of the useful materials in industry. The surface treatment of polyimide by a femtosecond laser can help accurate and fine fabrication of microstructure. And it can change the transmittance and reflectance of polyimide, too. We put femtosecond laser pulses on polyimide for rectangular or square type surface treaments and observe the change of transmittance and reflectance. Pulsewidth is 172 fs, laser power changes for fabrication are from 5 mW to 20 mW, and transmittance and reflectance are measured under 20m W, 300m W, and 920 mW. Pulse patterning is stable and almost no unwanted surface damage is shown. As power increases, working depth increases but working line width does not increase significantly. As speed changes, they also have same results. It shows the efficiency of a femtosecond laser is good and thermal damage is small for polyimide.

  • PDF