• 제목/요약/키워드: Feeler Gauge

검색결과 2건 처리시간 0.018초

Development of Milling Fixture by Practical and Adaptive Tooling System(Part1)

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.33-37
    • /
    • 2000
  • Milling fixture is one kind of machining device according to the industrial demands for multi manufacturing products on the growing at alarming rate. In the field of design and making for machine tool working, welding, assembling with fixture for mass production is a specific division. In order to prevent the production defects, occurring, the optimum design of product, fixture putting in the field is very significant manufacturing method. They require analysis of many kinds of important factors, theory and practice of machine tool operating process and its situations, fixture and its structure, machining condition for tool making tool materials, heat treatment of fixture components, know-how and so on. In this study we designed and constructed a milling fixture of mass production and performed tryout under the AUTO CAD, database, I-DEAS and WINDOW environment. Especially part 1 of this study is reveals with the analysis of part drawing, fixture planning, fixture design etc.

  • PDF

티타늄과 금합금의 레이저 용접부의 인장강도 (TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS)

  • 송윤관;송광엽;하일수
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF