• Title/Summary/Keyword: Feeding Induced Hypovolemia

Search Result 7, Processing Time 0.032 seconds

Significance of Feeding Induced Hypovolemia in Feed Intake Control of Goats Fed on Alfalfa Hay

  • Sunagawa, Katsunori;Prasetiyono, Bambang W.H.E.;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.366-370
    • /
    • 2002
  • The objective of this study was to examine whether feeding induced hypovolemia (decrease in plasma volume) acts on the regulation of feed intake in goats fed on dry forage. In order to prevent feeding induced hypovolemia, a 2 h intravenous infusion (16-18 ml/min) of isotonic mannitol solution was begun 1 h prior to feeding and continued until 1 h after the start of the 2 h feeding period. The intravenous infusion of isotonic mannitol solution (MI) decreased plasma osmolality by 1.0%, plasma total protein concentration by 4.2% and hematocrit by 5.9%, respectively. In comparison with no infusion (NI), MI significantly decreased thirst level by approximately 13%. At the completion of the 2 h feeding period, cumulative feed intake had been increased by 43% by MI. In conclusion, feeding induced hypovolemia in goats fed on dry forage increased thirst level more than the increase in plasma osmolality did. The results demonstrate that feeding induced hypovolemia is one of the factors controlling feed intake in goats fed on dry forage.

Significance of Hypovolemia in Feed Intake Control of Goats Fed on Dry Feed

  • Sunagawa, Katsunori;Prasetiyono, Bambang W.H.E.;Shinjo, Akihisa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1267-1271
    • /
    • 2001
  • The objective of this study was to examine the significance of feeding induced hypovolemia (decrease in plasma volume) in controlling the feed intake of goats fed on dry feed. In order to alleviate hypovolemia with feeding, a 2 h intravenous infusion (16-18 ml/min) of artificial saliva or mannitol solution was begun 1 h prior to feeding and continued until 1h after the start of the 2 h feeding period. In comparison with no infusion (NI), cumulative feed intake was increased by 41% with artificial saliva infusion (ASI) and by 45% with mannitol infusion (MI) by the completion of the 2 h feeding period. Both infusion treatments (ASI and MI) were significantly different (p<0.05) from the NI treatment in terms of the cumulative feed intake. The cumulative feed intake between the ASI and MI treatments was not significantly different (p>0.05). No infusion treatment (NI) had the lowest cumulative feed intake (929 g DM), whereas MI had the highest (1345 g DM), after completion of the 2 h feeding period. Generally, infusion treatments also increased the rate of eating at all time points after feeding was commenced. Following the first 30 mins of feeding, the rate of eating decreased sharply, and subsequently declined gradually in all treatments. Compared to the NI, both ASI and MI significantly (p<0.05) decreased thirst level (water intake for 30 mins after the completion of the 2 h feeding period) by approximately 13%. However, the thirst level caused by ASI and MI was not significantly different (p>0.05). Both ASI and MI decreased the plasma concentrations of osmolality and total protein, and hematocrit at 1 h after infusion. The results suggested that the thirst sensation in the brain could be produced by feeding induced hypovolemia. Moreover, the results indicate that hypovolemia is one of the factors controlling the feed intake of goats fed on dry feed.

Physiological Factors Depressing Feed Intake and Saliva Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Ishii, Y.;Nagamine, I.;Shinjo, A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.60-69
    • /
    • 2007
  • Ruminants eating dry forage secrete large volumes of saliva which results in decreased plasma volume (hypovolemia) and the loss of $NaHCO_3$ from the blood. The present research investigated whether or not hypovolemia and the loss of $NaHCO_3$ from the blood in goats brought about by dry forage feeding actually depresses feed intake and saliva secretion, respectively. The present experiment consisted of three treatments (NI, ASI, MI). In the control treatment (NI), a solution was not infused. In the ASI treatment, i.v. infusion of artificial parotid saliva was initiated 1 h before feeding and continued for the entire 2 h feeding period. In the MI treatment, iso-osmotic mannitol solution was infused. The NI treatment showed that hematocrit and plasma total protein concentration were increased due to decreased circulating plasma volume brought about by feeding. In the ASI treatment, the fluid and $NaHCO_3$ that were lost from the blood because of a feeding-induced acceleration of saliva secretion was replenished with an intravenous infusion of artificial parotid saliva. This replenishment lessened the levels of suppression on both feeding and parotid saliva secretion. When only the lost fluid was replenished with an intravenous infusion of iso-osmotic mannitol solution in the MI treatment, the degree of feeding suppression was lessened but the level of saliva secretion suppression was not affected. These results indicate that the marked suppression of feed intake during the initial stages of dry forage feeding was caused by a feeding-induced hypovolemia while the suppression of saliva secretion was brought about by the loss of $NaHCO_3$ from the blood due to increased saliva secretion during the initial stages of feeding.

An Intravenous Replenishment of Salivary Components and Dry Forage Intake in Freely Drinking Large-type Goats

  • Sunagawa, K.;Hashimoto, T.;Izuno, M.;Hashizume, N.;Okano, M.;Nagamine, I.;Hirata, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.538-546
    • /
    • 2008
  • Large-type goats eating dry forage secreted large volumes of saliva which resulted in the loss of $NaHCO_3$ from the blood and decreased plasma volume (hypovolemia). This research investigated whether or not the loss of $NaHCO_3$ from the blood and hypovolemia brought about by dry forage feeding actually depresses feed intake in large-type goats under free drinking conditions. The present experiment consisted of three treatments (NI, ASI, MI). All treatments in this experiment were carried out under free drinking conditions. In the NI control (NI), a solution was not infused. In the ASI treatment, i.v. infusion of artificial saliva was initiated 2 h before feeding and was continued for a total of 3 h concluding 1 h after the commencement of the feeding perod. In the MI treatment, mannitol solution was infused to replenish only water lost from the blood in the form of saliva. The hematocrit and plasma total protein concentrations during feeding in the NI control were observed to be higher than pre-feeding levels. This indicated that dry forage feeding-induced hypovolemia was caused by the accelerated secretion of saliva during the initial stages of feeding in freely drinking large-type goats. Increases in hematocrit and plasma total protein concentrations due to dry forage feeding were significantly suppressed by the ASI treatment. While hematocrit during feeding in the MI treatment was significantly lower than the NI control, plasma total protein concentrations were not different. From these results, it is clear that the MI treatment was less effective than the ASI treatment in mitigating the decreases in plasma volume brought about by dry forage feeding. This indicates that plasma volume increased during dry forage feeding in the ASI treatment which inhibited production of angiotensin II in the blood. The ASI treatment lessened the levels of suppression on dry forage feeding, but the MI treatment had no effect on it under free drinking conditions. The results indicate that despite the free drinking conditions, increases in saliva secretion during the initial stages of dry forage feeding in large-type goats caused $NaHCO_3$ to be lost from the blood into the rumen which in turn caused a decrease in circulating plasma volume and resulted in activation of the renin-angiotensin system and thus feeding was suppressed.

Controlling Factors of Feed Intake and Salivary Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Nagamine, I.;Shiroma, S.;Shinjo, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1414-1420
    • /
    • 2005
  • The purpose of this research was to determine whether or not feeding induced hypovolemia (decreases in plasma volume) and decreases in plasma bicarbonate concentration caused by loss of $NaHCO_3$ from the blood, act to suppress feed intake and saliva secretion volumes during the initial stages of feeding in goats fed on dry forage. The animals were fed twice a day at 10:30 and at 16:00 for 2 h each time. Prior to the morning feeding, the collected saliva (3-5 kg) was infused into the rumen. During the morning 2 h feeding period (10:30 to 12:30), the animals were fed 2-3 kg of roughly crushed alfalfa hay cubes. At 16:00, the animals were fed again with 0.8 kg of alfalfa hay cubes, 200 g of commercial ground concentrate and 20 g of sodium bicarbonate. In order to compensate for water or $NaHCO_3$ lost through saliva during initial stages of feeding, a 3 h intravenous infusion (17-19 ml/min) of artificial mixed saliva (ASI) or mannitol solution (MI) was begun 1 h prior to the morning feeding and continued until the conclusion of the 2 h feeding period. The physiological state of the goats in the present experiment remained unchanged after parotid gland fistulation. Circulating plasma volume decreases caused by feeding (estimated by increases in plasma total protein concentration) were significantly suppressed by the ASI and MI treatments. During the first 1 h of the 2 h feeding period, plasma osmolality in the ASI treatment was the same as the NI (non-infusion control) treatment, while plasma osmolality in the MI treatment was significantly higher. In comparison to the NI treatment, cumulative feed intake levels for the duration of the 2 h feeding period in the ASI and MI treatments increased markedly by 56.6 and 88.3%, respectively. On the other hand, unilateral cumulative parotid saliva secretion volume following the termination of the 2 h feeding period in the ASI treatment was 50.7% higher than that in the NI treatment. MI treatment showed the same level as the NI treatment. The results of the present experiment proved that the humoral factors involved in the suppression of feeding and saliva secretion during the initial stages of feeding in goats fed on dry forage, are feeding induced hypovolemia and decrease in plasma $HCO_3^-$ concentration caused by loss of $NaHCO_3$ from the blood.

Effect of Parotid Saliva Secretion on Dry Forage Intake in Goats

  • Sunagawa, Katsunori;Nakatsu, Yoshifumi;Nishikubo, Yoriko;Ooshiro, Takeshi;Naitou, Kouta;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1118-1125
    • /
    • 2003
  • Research was carried out to clarify whether a suppression of dry forage intake during the early stages of feeding in ruminants is caused by feeding induced hypovolemia which is produced by the accelerated secretion of parotid saliva. Goats with a parotid fistula were fed roughly crushed alfalfa hay cubes, commercial ground concentrate feed and $NaHCO_3$ twice daily (10:00-12:00, 16:00-18:00). The animals were free access to drinking water all day prior to, during and after experiments. The animals were intraruminally infused every day prior to the morning feeding period with parotid saliva collected from the parotid fistula over a 24 h period. The present experiment consisted of two treatments, non-infusion (RNI) and intraruminal infusion of parotid saliva (RSF). In the RSF treatment, 4-5 kg of parotid saliva (280-290 mOsm/l) collected over a 24 h period was intraruminally infused 1 h prior to the commencement of the morning feeding. During feeding, eating and parotid saliva secretion rates were measured. Blood samples were also periodically collected from the jugular vein. During and after 2 h feeding, water intakes were measured, respectively. These measurements were used to define thirst levels. It is thought that rumen fill in the RSF treatment was higher than the RNI treatment. Plasma osmolality in the RSF treatment increased in the first half of the 2 h feeding period due to the intraruminal infusion of parotid saliva. Therefore, parotid saliva secretion rates in the RSF treatment were lower than the RNI treatment for 30 min period from 30 to 60 min after the commencement of feeding. On the other hand, plasma total protein concentration and hematocrit in the RSF treatment decreased by 3.2 and 3.3% prior to the commencement of feeding due to the intraruminal infusion of parotid saliva. In the first half of the 2 h feeding period, plasma total protein concentration and hematocrit in the RSF treatment showed a tendency to decrease compared to the RNI treatment. Thirst level in the RSF treatment during feeding was approximately 31.3% less than the RNI treatment. Upon the completion of the 2 h feeding period, cumulative feed intake in the RSF treatment was significantly larger (19.7%) than the RNI treatment. The results suggest that a suppression of dry forage intake during the early stages of feeding in goats is partly caused by feeding induced hypovolemia, which is produced by the accelerated secretion of parotid saliva.

The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats - A Review

  • Sunagawa, Katsunori;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of $NaHCO_3$ due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed.