• Title/Summary/Keyword: Feedback Circuit

Search Result 492, Processing Time 0.018 seconds

On a High-Speed Implementation of LILI-128 Stream Cipher Using FPGA/VHDL (FPGA/VHDL을 이용한 LILI-128 암호의 고속화 구현에 관한 연구)

  • 이훈재;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.3
    • /
    • pp.23-32
    • /
    • 2001
  • Since the LILI-128 cipher is a clock-controlled keystream generator, the speed of the keystream data is degraded in a clock-synchronized hardware logic design. Basically, the clock-controlled $LFSR_d$ in the LILI-128 cipher requires a system clock that is 1 ~4 times higher. Therefore, if the same clock is selected, the system throughput of the data rate will be lowered. Accordingly, this paper proposes a 4-bit parallel $LFSR_d$, where each register bit includes four variable data routines for feed feedback of shifting within the $LFSR_d$ . Furthermore, the timing of the propose design is simulated using a $Max^+$plus II from the ALTERA Co., the logic circuit is implemented for an FPGA device (EPF10K20RC240-3), and the throughput stability is analyzed up to a late of 50 Mbps with a 50MHz system clock. (That is higher than the 73 late at 45 Mbps, plus the maximum delay routine in the proposed design was below 20ns.) Finally, we translate/simulate our FPGA/VHDL design to the Lucent ASIC device( LV160C, 0.13 $\mu\textrm{m}$ CMOS & 1.5v technology), and it could achieve a throughput of about 500 Mbps with a 0.13$\mu\textrm{m}$ semiconductor for the maximum path delay below 1.8ns.

Physiological Regulation of Luteinizing Hormone(LH) Expression in Rat Mammary Gland during Differentiation (분화중인 흰쥐 유선내 Luteinizing Hormone (LH) 유전자 발현의 생리적인 조절)

  • 이성호
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.175-180
    • /
    • 2001
  • The ectopic expression of gonadotropin releasing hormone(GnRH and luteinizing hormone(LH) in several tissues is a quite intriguing phenomenon. Recently, the presence of GnRH and its receptor has been clearly demonstrated in rodents and human mammary gland. In this context, one can postulate that the presence of local circuit composed of GnRH and LH in the gland. The present study was undertaken to elucidate whether there is a correlation between the LH expression in rat mammary gland and physiological status during the process of mammary differentiation. LH contents in mammary gland from cycling to weaning rats were measured by radioimmunoassay(RIA). In cycling rats, changes of the LH level in both serum and mammary gland showed similar pattern as the highest level in proestrus and the lowest level in diestrus II stage. While the serum LH levels were fluctuated from pregnant through involution stage, a sharp decline of mammary LH contents was observed in the lactating rats. This decrement was recovered in involuting rats to the level of proestrus stage. Reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot analyses demonstrated that the transcriptional activities of the mammary LH and GnRH were increased from diestrus I stage to estrus stage, and the increased levels were maintained in pregnant, lactation and involution stages. To test the hypothesis that the alteration in mammary LH expression might be steroid-dependant, ovariectomy(OVX) and steroid supplement model was employed. As expected, supplement of estradiol(E$_2$) after OVX remarkably decreased serum LH level compared to that in serum from vehicle-only treated rats. Likewise, administration of E$_2$ significantly reduced the mammary LH content. The present study demonstrated that (i) the LH expression in mammary gland could be altered by some physiological parameters such as estrous cycle, pregnancy, lactation and involution, and (ii) ovarian steroid especially estrogen seems to be one of major endocrine factors which are responsible for regulation of mammary LH expression.

  • PDF