• Title/Summary/Keyword: Feed speed

Search Result 911, Processing Time 0.032 seconds

A Study on Feed Rate Characteristics of Motor-driven Cylinder Lubricator with Electronic Control Quill in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 전자제어 퀼 부착 모터구동 실린더 주유기의 송출유량 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Jung, Yeun-Hak;Kim, In-Deok;Kang, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke marine diesel engine is of great economic importance. In Korea, authors first developed a motor-driven cylinder lubricator for a Wartsila Switzerland large two-stroke diesel engine. The characteristic of the developed product is that can control automatically the oil feed rate with a load fluctuation by the motor drive and the offset cam. For manufacturing the reliable and useful products, however, it is necessary to investigate further characteristics and to improve performances as a cylinder lubricator. In this study, the effects of pump motor speed, plunger stroke and cylinder back pressure on oil feed rate, maximum discharge and delivery pressures are experimentally investigated by using the electronically controlled quill injection system and distributer in the developed cylinder lubricator. It is found that the oil feed rates of electronic control and mechanical type quills with the in-cylinder back pressure are differently characterized by the role of accumulator, the viscous resistance of contact area, etc. It can be also shown that the maximum discharge pressure of the electronic control quill is lower than the mechanical type one but the maximum discharge pressure difference of two types decreased as plunger stroke is small, and the maximum delivery pressures of two types increased as plunger stroke, motor speed and back pressure are elevated but the maximum delivery pressure of mechanical type is higher than the one of electronic control type.

A Study on the Feed Characteristics of Twist Friction Driver (Twist Friction Driver의 이송특성에 관한 연구)

  • Jeong, Jun-Hui;Lee, Eung-Suk;An, Dong-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.934-939
    • /
    • 2004
  • This paper propose a study on the Feed Characteristics of Twist Friction Driver. We are using Twist Friction Driving mechanism system. The system consists of Twist Friction Driver elements such as driving shaft, driven roller, Spring for pre-load, Air bearing guide, Servo motor, and measuring devices such as Encoder of Servo motor, Laser interferometer, LVDT . The Twist Friction driver is mechanically simple and very quiet at high speed, and has low pre-load. So The Twist Friction driver can materialize an ultra precision feed-resolution. The feed characteristics of the driver is determined by slip and angular error, backlash.

  • PDF

Study on Dressing Conditions for Creep-feed in Cubic Boron Nitride Grinding of OrthoMTA Compacters (OrthoMTA 컴팩터의 크리프피드 CBN 연삭을 위한 드레싱 조건 연구)

  • Maeng, Heeyoung;Baek, Eun-Pyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.69-74
    • /
    • 2014
  • An OrthoMTA compacter is made by machining a Ni-Ti alloy wire using tapered helix creep-feed grinding machines. This aim of this study is to find the optimal dressing conditions to sharpen the corner of a cubic boron nitride (CBN) wheel. On the basis of the results of various experiments, it is verified that the most important factors in dressing are the dressing depth and feeding method, whereas the feed rate has less importance for producing a smaller corner R value. The study also finds the optimum dressing depth to reduce the dressing time, a feeding speed and method to stabilize the machining, and the mesh grade for the CBN wheel to make the groove of the compacter deeper.

Feed Optimization for High-Efficient Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 이송량의 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1338-1343
    • /
    • 2007
  • High-efficient machining, which means cutting a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on the cutting power regulation was proposed to realize the high-efficient machining in turning process. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

  • PDF

High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition (고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

A Study on Turbine Auxiliary Devices in a Thermal Power Plant (화력발전소 터빈 보조기기 제어 관한 고찰)

  • Jeong, Chang-Ki;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1667-1668
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Turbine auxiliary devices such as condenser, deaerator, feed water heater, gland steam condenser, pump recirculation equipment, feed water pump, and so on should be operated well so that the steam turbine exert its maximum efficiency. There are many control loop such as hot well level and condenser recirculation, deaerator level, pegging steam pressure, feed water heater level, feed water pump recirculation. In this paper condenser level control and deaerator level control are going to be described.

  • PDF

A Study on the Characteristics of Deep Hole Drilling Process Using Single Edge Drill with Small Diameters (미소직경의 Single Edge형 드릴을 사용한 심공드릴링 공정의 가공특성에 관한 연구)

  • 최성주;이우영;박원규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Applications of the deep hole drilling process can be found in many industries ranging from large aerospace manufacturer to small tool and die shop. Deep hole drilling process with small diameter generally requires high quality and accuracy. But problems which may arise or result from the deep hole drilling process include drill breakage, the generation of a finished part surface which does not satisfy required quality, and process instability. To guaranty the required machining quality and accuracy, it is important to understand and improve the deep hole drilling process. In this study, deep hole drilling experiments using tingle edge drill with small diameter under 2mm have been carried out for difficult to cut materials such as C42CrMo4 and C45pb and the experimental results were analyzed. Feed force and torque versus feed showed linear relationship in both materials. The feed force and torque are decreased as cutting speed is increased but the trends are not uniform in C42CrMo4.

The Development of Microparticle Feed Using Microencapsulation (Microencapsulation을 이용한 미립자 사료개발)

  • 이은주;김성구
    • Journal of Life Science
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 1996
  • The development of fish feed is essential to aquaculture. Recently, yeast, dhlorella and plankton have been studied and development as the feed of the fry fishes, But, these biological feeds cause the nutritional unbalance to fry fishes, rotifer or artemia. Therefore, to solve these problems, microcapsules with micron sizes were prepared for enhancing the nutritional values of artemia and rotifer which are used as the feed of fry fishes. Microparticle oil capsules were prepared by the complex coacervation technique. The method to make the optimal size of microcapsule which the artemia and rotifer can be easily taken was wvaluated. The size of oil microcapsule in the range of 5-70$\mu$m was obtained by the agitation conditions during coacervation. Capsule size and size distribution were dependent on the agitation speed and agitation time, respectively.

  • PDF

Analysis on Electrostatic Coupling around High speed Railway Feed System (고속철도 교류 급전계통 주변의 정전유도 영향 분석)

  • Myung, S.H.;Lee, J.B.;Kim, E.S.;Min, S.W.;Lee, J.W.;Lee, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1390-1392
    • /
    • 2000
  • In this paper, a numerical calculation method based on CSM has been described. The electric field must be nonuniform even close to railway feed system. In that case, to calculate induced voltage, this paper uses the mutual capacitances between a conductor and railway feed system. The induced voltages of a conductor located at point (height=4m, distance=8m) near by railway feed system are calculated from 370V to 668V.

  • PDF