• Title/Summary/Keyword: Feed energy level

Search Result 358, Processing Time 0.03 seconds

Utilization of dietary protein, lipid and carbohydrate by flounder (Paralicthys olivaceus)

  • Lee, Sang-Min
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.17-18
    • /
    • 2003
  • Although flounder is one of the most important marine fish for aquaculture in Korea, feeding the flounder in commercial farms depends mainly on moist pellet in which over 70% frozen fishes (e.g. frozen horse mackerel) are incorporated in its formulation. Therefore, for further expansion of flounder farming, it is essential to employ practical formulated feeds that can support reasonable growth. Development of nutritionally balanced and cost-effective feeds is dependant on the information about nutritional requirement and feed utilization of the species. Nutrient and energy source in feed are needed for the growth and maintenance of fish. Protein is probably the most important nutrient affecting fish growth and feed cost. Therefore, it is essential to determine the optimum dietary protein level for the growth of fish, both its high proportion in the feed and because it is the main factor in determining feed cost. Dietary energy level is also critical because protein source in the feed is utilized as an energy source when the feed deficient in energy is fed to fish, whereas when the feed excess in energy is fed to fish, feed consumption decreased and resulted in growth reduction due to lack of other necessary nutrients for normal growth. Improper dietary protein, energy levels and/or their ratio will lead to an increase of fish production cost and deterioration of water quality resulting from wasted feed; thus, they are important in formulating commercial feed. Dietary lipids play important roles in providing energy and essential fatty acid for normal growth and survival of fish. Although carbohydrates are not essential nutrients for carnivorous fish, these compounds play important roles as a low-cost energy source for protein sparing and also as a feed binder. Nutrition researches for flounder have identified its requirements of protein, lipid and essential fatty acid, vitamin, and minerals for normal growth. Other studies have also been carried out to investigate the utilization of the protein, lipid and carbohydrate sources. Based on these nutritional information obtained, practical feed formulations have been studied for improve aquaculture production of flounder. The results of the researches on utilization of dietary protein, lipid and carbohydrate by flounder are discussed in this review.

  • PDF

Effects of Dietary Energy and Protein Levels on the Performance of Brown Layer in Summer (산란계 사료의 에너지 및 단백질 수준이 하절기에 있어서 갈색산란계의 생산성에 미치는 영향)

  • 이승우;이상진;김영일;오세정
    • Korean Journal of Poultry Science
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 1987
  • Total 720 brown layers were fed 9 rations differing in metabolizable energy (2500, 2700 and 2900 kcal/kg) and crude protein (13, 15 and 17%) levels for a period of 12 weeks in order to study the effects of dietary energy and protein levels on the performance of brwon layer in summer. As metabolizable energy level increased from 2500 to 2900Kcal/kg of feed egg production, daily feed and protein intake were decreased, but daily energy intake, energy requirement and feed cost per kilogram of egg mass were increased. There were no significant difference in egg weight, feed conversion and motality among dietary energy levels. On the other hand, as dietary Protein level increased from 13 to 17% egg Production, egg weight, daily protein intake and protein requirement per kilogram of egg mass were increased, but feed and energy requirement and feed cost per kilogram or egg mass were decreased. However daily feed intake and mortality were not affected by dietary protein level.

  • PDF

THE FEEDING AND ECONOMIC VALUE OF MAIZE COB MEAL FOR BROILER CHICKENS

  • Ochetim, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.367-371
    • /
    • 1993
  • The feeding value of maize cob meal was investigated in a trial involving one hundred and forty Arbor Acre day-old chicks raised to eight weeks of age. The maize cob meal which contained 32.5% fibre, 2.5% protein and had a gross energy value of 2,550 kcal/kg, was incorporated into the experimental diets at either 0, 2.9, 5.8, 11.6 or 23.2% level. All diets were formulated to contain 3,200 kcal/kg of metabolizable energy and approximately 22% protein by varying the proportions of maize and whole cooked soyabean meal in the diets. The inclusion of maize cob meal up to 11.6% in the diet did not significantly (p>0.05) affect body weight gains, feed consumption and utilization, as well as carcass yield and dressing percentage. However, at the 23.2% level of maize cob meal inclusion, body weight gains, feed utilization and carcass yields were significantly (p<0.05) reduced. The use of maize cob meal reduced feed cost for raising birds and either maintained or improved gross profit returns with up to 11.6% level of inclusion in the diet. It was concluded that maize cob meal can be included up to 11.6% in the diet of broiler chickens provided dietary energy concentration is maintained at 3,200 kcal of metabolisable energy per kilogramme of feed by using high energy density feed ingredient such as boiled whole seed soyabean meal.

Studies on the Optimum Dietary Energy and Protein Levels in Laying Hen (산란계사료의 적정에너지 및 단백질수준에 관한 연구)

  • 이상진;이규호;정선부;오세정
    • Korean Journal of Poultry Science
    • /
    • v.14 no.1
    • /
    • pp.39-53
    • /
    • 1987
  • A total of 1,440 White Leghorn pullets hatched in summer and winter, aged 20 to 72 weeks were fed 9 rations differing in dietary protein (13, 15 and 17%) and energy (2,500, 2,700 and 2,900 kcal/kg) levels for a period of 52 weeks in order to evaluate the optimum dietary energy and protein levels for laying hens. As metabolizable energy level increased from 2,500 to 2,900 kcal/kg of feed egg production, daily feed and protein intake and egg shell quality decreased, but reverse was true for the daily energy intake, energy requirement and feed cost per kg egg, body weight gain, nutrients utilizability and abdominal fat accumulation, Egg weight, viability and egg yolk Pigmentation were not affected by the dietary energy level. On the other hand, as dietary protein level increased from 13 to 17%, egg production, egg weight, daily protein intake, protein requirement per kg egg and body weight gain icreased, but daily feed and energy intake, feed and energy requirement per kg egg, egg yolk pigmentation and dry matter utilizability decreased, and no significant difference in the feed cost per kg egg, viability and egg shell quality was observed among dietary protein levels. However: the hens fed 15% and 17% Protein diets did not show significant differences in egg production, egg weight and body weight gain. For the entire laying period of 52 weeks, metabolizable energy level of 2,500 kcal/kg of feed and 15% dietary protein level were considered to be adequate to support the optimum productivity.

  • PDF

EFFECT OF DIFFERENT DIETARY PROTEIN AND ENERGY LEVELS ON THE PERFORMANCES OF STARCROSS PULLETS

  • Uddin, M. Salah;Tareque, A.M.M.;Howlider, M.A.R.;Khan, M. Jasimuddin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.361-368
    • /
    • 1991
  • In two experiments 640 starcross replacement pullets between 25 and 154 days of age were fed ad libitum on either of 16 diets formed by the combination of $4CP{\times}4ME$ levels to study the interaction of CP and ME on growth performances. In both experiments, feed intake decreased, but protein intake, energy intake, live weight gain and feed conversion efficiency increased and sexual maturity hastened with the increase of dietary protein and/or energy level. The protein conversion efficiency decreased with the increase of dietary protein level. The energy conversion efficiency, however, did not show any relationship with dietary energy level. There was a greater improvement of growth performance due to simultaneous increase of dietary protein and energy level than that of increasing protein or energy alone.

Effects of dietary protein and energy levels on growth and body composition of juvenile turbot (Scophthalmus maximus L.) reared under optimal salinity condition

  • Cho, Sung-Hwoan;Lee, Jong-Kwan;Lee, Jong-Ha;Lim, Young-Soo;Lim, Han-Kyu;Lee, Jung-Ho;Lee, Sang-Min
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.239-241
    • /
    • 2003
  • Several nutrients in feed are needed for growth and maintenance of fish and protein among them is probably the most important factor influencing its growth and determining feed cost due to high Proportion. Besides, dietary energy level is critical because protein source in the feed was utilized as energy source when the feed deficient in energy was fed to fish, whereas when the feed excess in energy was fed to fish, feed consumption decreased and resulted in growth reduction due to lack of necessary other nutrients for the normal growth (Lovell 1989). (omitted)

  • PDF

STUDIES ON THE NUTRIENT REQUIREMENTS OF KOREAN NATIVE CATTLE I. EFFECT OF ENERGY LEVELS ON PERFORMANCE AND ENERGY INTAKE OF GROWING AND FINISHING KOREAN NATIVE CATTLE

  • Ahn, B.H.;Ahn, D.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.2
    • /
    • pp.59-66
    • /
    • 1989
  • Growing and finishing Korean native bulls were used to investigate the effects of different dietary energy levels on performance and energy intake. Experimental observations were made over three weight categories (200 to 250 kg, 250 to 350 kg and 350 to 450 kg). Three diets (2.4, 2.6 and 2.8 Mcal ME/kg DM) were used for each weight category. Crude protein levels of the diets were 12, 11 and 10% for the respective weight groups. Dietary energy level did not significantly affect daily body gain within a weight range but daily body gain during the entire experiment was higher (P<.05) in bulls receiving 2.6 Mcal energy diet than in those fed 2.4 and 2.8 Mcal energy diets. The following equation was developed to predict daily body gain(Y) from energy levels(X) of ration. $Y\;=\;1.3.475X\;-\;2.5949X^{2}\;-\;16.355$ Increasing energy levels significantly (P<.05) decreased daily feed intake. The following equation was developed to predict daily feed intake(Y) from energy levels(X) of ration. $Y\;=\;-30.013X\;+\;5.4401X^{2}\;+\;49.119$ Feed intake per metabolic body size during the entire feeding period ranged from 100.9 to 110.8 g and was lower in bulls fed 2.6 and 2.8 Mcal energy diets than in those fed 2.4 Mcal energy diet. Increasing energy levels significantly (P<.05) improved feed efficiency. The following equation was developed to predict feed efficiency(Y) from energy levels(X) of ration. $Y\;=\;-118.34X\;+\;22.448X^{2}\;+\;162.85$ Daily energy intake during the entire experiment ranged from 18.90 to 19.99 Mcal and there was no significant difference among energy levels. Daily energy intake per metabolic body size during the feeding period ranged from 248.6 to 260.8 kcal and was slightly higher in bulls receiving 2.8 Mcal than in those fed 2.4 and 2.6 Mcal energy diets. Energy required per kg body gain ranged from 17.25 to 19.11 Mcal and was slightly lower in bulls receiving 2.6 Mcal energy diet than in those fed 2.4 and 2.8 Mcal energy diets.

Influence of Energy Level and Glycine Supplementation on Performance, Nutrient Digestibility and Egg Quality in Laying Hens

  • Han, Yung-Keun;Thacker, Philip A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1447-1455
    • /
    • 2011
  • Sixty four, 30-week-old, Lohmann Brown-Lite laying hens were randomly allocated to one of four treatments with eight replicates per treatment and two hens per replicate for a 10 week study. The control diet was a high energy (11.81 MJ/kg) diet and the moderate energy (11.39 MJ/kg) diets were formulated dropping the level of animal fat. The three moderate energy diets were fed either unsupplemented (0.0%) or supplemented with 0.05 or 0.10% glycine. There were no significant differences (p>0.05) in hen-day egg production, egg weight, feed intake or feed conversion between birds fed the unsupplemented moderate energy and high energy diets. Significant differences were detected concerning egg components and quality measurements as assessed by albumen percentage (p = 0.02), yolk weight (p = 0.02), yolk percentage (p<0.01), yolk to albumen ratio (p<0.01) and yolk color (p = 0.01) between birds fed the unsupplemented moderate and high energy diets. Glycine supplementation of the moderate energy diet linearly increased (p<0.01) egg weight and feed intake with no significant (p>0.05) effects on egg production or feed conversion. Glycine supplementation significantly increased egg content (p<0.01), albumen weight (p<0.01) and percentage (p<0.01) as well as yolk weight (p<0.01) while yolk percentage (p = 0.04), yolk to albumen ratio (p = 0.01) and egg shell percentage (p<0.01) were linearly decreased. Supplementation with glycine produced a tendency (p = 0.09) towards an increase in the percentage of large eggs (63-72.9 g) produced with a concomitant decrease in the percentage of small (below 53 g) eggs (p = 0.09). The overall results of this study indicate that glycine supplementation of laying hen rations has the potential to increase egg production and weight. These increases appeared to be mediated through increases in feed intake and the ileal digestibility of fat and energy.

Effects of Inclusion Levels of Wheat Bran and Body Weight on Ileal and Fecal Digestibility in Growing Pigs

  • Huang, Q.;Su, Y.B.;Li, D.F.;Liu, L.;Huang, C.F.;Zhu, Z.P.;Lai, C.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.847-854
    • /
    • 2015
  • The objective of this study was to determine the effects of graded inclusions of wheat bran (0%, 9.65%, 48.25% wheat bran) and two growth stages (from 32.5 to 47.2 kg and 59.4 to 78.7 kg, respectively) on the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD) and hindgut fermentation of nutrients and energy in growing pigs. Six light pigs (initial body weight [BW] $32.5{\pm}2.1kg$) and six heavy pigs (initial BW $59.4{\pm}3.2kg$) were surgically prepared with a T-cannula in the distal ileum. A difference method was used to calculate the nutrient and energy digestibility of wheat bran by means of comparison with a basal diet consisting of corn-soybean meal (0% wheat bran). Two additional diets were formulated by replacing 9.65% and 48.25% wheat bran by the basal diet, respectively. Each group of pigs was allotted to a $6{\times}3$ Youden square design, and pigs were fed to three experimental diets during three 11-d periods. Hindgut fermentation values were calculated as the differences between ATTD and AID values. For the wheat bran diets, the AID and ATTD of dry matter (DM), ash, organic matter (OM), carbohydrates (CHO), gross energy (GE), and digestible energy (DE) decreased with increasing inclusion levels of wheat bran (p<0.05). While only AID of CHO and ATTD of DM, ash, OM, CHO, GE, and DE content differed (p<0.05) when considering the BW effect. For the wheat bran ingredient, there was a wider variation effect (p<0.01) on the nutrient and energy digestibility of wheat bran in 9.65% inclusion level due to the coefficient of variation (CV) of the nutrient and energy digestibility being higher at 9.65% compared to 48.25% inclusion level of wheat bran. Digestible energy content of wheat bran at 48.25% inclusion level (4.8 and 6.7 MJ/kg of DM, respectively) fermented by hindgut was significantly higher (p<0.05) than that in 9.65% wheat bran inclusion level (2.56 and 2.12 MJ/kg of DM, respectively), which was also affected (p<0.05) by two growth stages. This increase in hindgut fermentation caused the difference in ileal DE (p<0.05) to disappear at total tract level. All in all, increasing wheat bran levels in diets negatively influences the digestibility of some nutrients in pigs, while it positively affects the DE fermentation in the hindgut.

Effects of Supplementation of β-Mannanase in Corn-soybean Meal Diets on Performance and Nutrient Digestibility in Growing Pigs

  • Lv, J.N.;Chen, Y.Q.;Guo, X.J.;Piao, X.S.;Cao, Y.H.;Dong, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.579-587
    • /
    • 2013
  • A total of 288 crossbred (Duroc${\times}$Landrace${\times}$Yorkshire) growing pigs were used in two experiments to investigate the effects of adding ${\beta}$-mannanase to corn-soybean meal-based diets on pig performance and apparent total tract digestibility (ATTD). Both experiments lasted 28 d and were split into two phases namely 1 to 14 days (phase 1) and 15 to 28 days (phase 2). In Exp. 1,144 pigs weighing $23.60{\pm}1.59$ kg BW were assigned to one of four corn-soybean meal-based diets containing 0, 200, 400 or 600 U/kg ${\beta}$-mannanase. Increasing the level of ${\beta}$-mannanase increased weight gain (quadratic effect; p<0.01) and feed efficiency (linear and quadratic effect; p<0.01) during the second phase and the overall experiment. However, performance was unaffected (p>0.05) by treatment during phase 1. Increasing the amount of ${\beta}$-mannanase in the diet improved (linear and quadratic effect; p<0.05) the ATTD of CP, NDF, ADF, calcium, and phosphorus during both phases. Based on the results of Exp. 1, the optimal supplementation level was determined to be 400 U/kg and this was the level that was applied in Exp. 2. In Exp. 2, 144 pigs weighing $23.50{\pm}1.86$ kg BW were fed diets containing 0 or 400 U/kg of ${\beta}$-mannanase and 3,250 or 3,400 kcal/kg digestible energy (DE) in a $2{\times}2$ factorial design. ${\beta}$-Mannanase supplementation increased (p<0.01) weight gain and feed efficiency while the higher energy content increased (p<0.01) feed intake and feed efficiency during both phases and overall. Increased energy content and ${\beta}$-mannanase supplementation both increased (p<0.05) the ATTD of DM, CP, NDF, ADF, phosphorus, and GE during both phases. There were no significant interactions between energy level and ${\beta}$-mannanase for any performance or digestibility parameter. In conclusion, the ${\beta}$-mannanase used in the present experiment improved the performance of growing pigs fed diets based on corn and soybean. The mechanism through which the improvements were obtained appears to be related to improvements in ATTD.