• Title/Summary/Keyword: Feed Water

Search Result 1,727, Processing Time 0.03 seconds

Effect of Nursing Frequency and Creep Feed Provision on the Milk and Feed Intake and Performance of Zero Day Weaned Piglets Reared on a Dummy Sow

  • Weng, R.C.;Edwards, S.A.;Hsia, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1540-1546
    • /
    • 2009
  • One hundred and forty-four piglets with an average birth weight of 1,672${\pm}$13.4 g were used to evaluate different feeding strategies for piglets reared from birth on a dummy sow. A 3${\times}$2 factorial experiment compared three nursing frequencies (1, 3 or 6 h intervals) and two feeding regimes (milk only, or milk combined with access to creep feed and water). The piglets which were nursed at one hour intervals had the lightest body weights at all days, and the poorest combined milk and creep feed dry matter conversion efficiency to piglet body weight gain in the second week. Piglets which were nursed at 3 h intervals had the heaviest body weight at day 15 and 22, but those nursed at 6 h intervals achieved similar body weight by days 29 (milk withdrawal) and 36. Piglets offered creep feed were observed to wean themselves before cessation of milk availability, and the timing of this self-weaning depended on the nursing frequency. The piglets nursed at one hour intervals weaned themselves between day 22 and day 29, those nursed at 3 h intervals weaned themselves between day 15 and day 22, whilst those nursed at 6 h intervals weaned themselves between day 8 and day 15. The piglets which were nursed at 6 h intervals had the highest total dry matter intake in weeks 3 and 4 when fed with milk, creep feed and water but not when fed milk only. They consequently had the poorest dry matter conversion efficiency in the fourth week and overall when fed with milk, creep feed and water, but not when fed milk only. It is concluded that the optimal management routine under these conditions is a 3 h nursing cycle with provision of supplementary creep feed and water.

Improvement in power plant feed water system (발전소의 급수 제어시스템의 개선)

  • 배영환;황재호;서진헌
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.553-556
    • /
    • 1989
  • Nowadays in power plant feed water control, it is very important to retain the stable drum level though power changes very fast. For the stable drum level in power plant, we have to model our plants and get the system functions. We make the L.Q. controller by using these functions and apply it to these systems. And we get the more stable drum level which is controlled by feed water qualities.

  • PDF

A Study on Turbine Auxiliary Devices in a Thermal Power Plant (화력발전소 터빈 보조기기 제어 관한 고찰)

  • Jeong, Chang-Ki;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1667-1668
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Turbine auxiliary devices such as condenser, deaerator, feed water heater, gland steam condenser, pump recirculation equipment, feed water pump, and so on should be operated well so that the steam turbine exert its maximum efficiency. There are many control loop such as hot well level and condenser recirculation, deaerator level, pegging steam pressure, feed water heater level, feed water pump recirculation. In this paper condenser level control and deaerator level control are going to be described.

  • PDF

Mercury Ion Removal Using a Packed-Bed Column with Granular Aminated Chitosan

  • JEON, CHOONC
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.497-501
    • /
    • 2005
  • This study deals with the removal of mercury species using a packed-bed column with spherical aminated chitosan material. These adsorbents revealed a high adsorption capacity for mercury species. Experiments with feed solutions of 10 ppm Hg dissolved in distilled water showed an excellent removal with a sharp increase of the filter effluent concentration after a total throughput of 900 bed volumes of feed water. Up to $95\%$ desorption was reached by using 3 bed volumes of 0.01 N EDTA solution. EDTA could be recovered by means of sulfuric acid with about $75\%$ efficiency. Almost the same results were obtained in repeated sorption and desorption experiments at identical conditions. The experiments demonstrated that the sorbents possessed practically no sorption capacity for alkaline earth ions ($Ca^{2+}\;and\;Mg^{2+}$). Their influence on the sorption of mercury was negligible. In experiments with spiked tap water of the Karlsruhe Research Centre and a feed mercury concentration of 0.01 mg/l, the breakthrough of Hg was observed only after a total throughput of about 6,000 bed volumes of feed water.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Effect of different conditions on pervaporation dehydration in CA/NYL66 blend membrane

  • Kazemzadeh, Akram;Mousavi, Seyed M.;Mehrzad, Jamshid;Motavalizadehkakhky, Alireza;Hosseiny, Malihesadat
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.441-449
    • /
    • 2019
  • In this study, cellulose acetate (CA) / nylon66 (NYL66) (95/5) blend membranes with different thicknesses were prepared by a solvent evaporation method. The effects of membrane thickness (almost $7-25{\mu}m$), feed concentration (70-95 wt.% isopropanol), and feed temperature ($30-60^{\circ}C$) were investigated on the performance of membrane in the separation of isopropanol-water mixtures. With regard to the results of sorption experiments, it was found that the increase of feed temperature enhanced the overall sorption while by increasing feed concentration, the overall sorption passed through a maximum value at 70 wt. % isopropanol (IPA). The best separation factor 3080.51 was gained at high isopropanol concentration 95 wt.%, low feed temperature $30^{\circ}C$, and high membrane thickness $24.62{\mu}m$. Regarding the pervaporation separation index, the obtained results showed that proper values for the thickness of membrane, feed temperature, and isopropanol concentration in feed were $24.62{\mu}m$, $40^{\circ}C$, and 70 wt.%, respectively.

A Feasibility Study on Sewage Discharge Water Treatment for Water Reuse by Direct Contact Membrane Distillation (하수처리수 재이용을 위한 직접접촉식 막증발법 적용 가능성 연구)

  • Choi, Yongjun;Choi, Jihyuck;Shin, Yonghyun;Cho, Hyeongrak;Sohn, Jinsik;Lee, Sangho
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2016
  • The reuse of wastewater is being diffused to manage and develop the water resources. Generally, the treated wastewater is discharged to the river after being treated to meet the effluent quality standard or reused for diverse uses through the reprocessing. And recently, as the reuse of the treated wastewater is activated, the technologies to utilize for the high quality water resources such as industrial water by reusing the wastewater with Membrane Distillation (MD) are under development. In this study, the direct contact membrane distillation (DCMD) process has been applied to treat sewage discharge water for water reuse. The laboratory scale experiment was performed by using a hydrophobic PVDF membrane with the pore size of $0.22{\mu}m$. The influence of operating parameters, such as feed temperature, feed flow rate, feed concentration, on the permeate flux and rejection has been investigated. All filtration tests were conducted till the feed volume reached a concentration factor of 3.0. Thus, the operating period ranged between 19 hr and 49 hr depending on filtration performance. The results showed that above 92% of TN, TP, COD and TOC in the feed could be rejected regardless of an operating condition. The water flux was ranged from 13.8 to 20.3 LMH. The lowest flux was obtained at the operating condition with the feed temperature of $50^{\circ}C$ and feed flow velocity of 500 mL/min while the highest one was measured with $60^{\circ}C$ and 900 mL/min. When the concentration factor reached 3.0, water flux declined by approximately ranged from 14.5% to 33.3%. But the fouling in MD is almost fully reversible, with more than 90% recovery of permeate water flux following a DI water rinse without the addition of chemical cleaning reagents.

Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation (기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가)

  • Cho, Gyu Sang;Lee, Jun-Seo;Park, Kiho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90 ℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.

Effect of Increased Water Intake on the Alleviation of Heat Stress in Chicken (수분 섭취의 증가가 닭의 고온 스트레스 완화에 미치는 효과)

  • 이봉덕
    • Korean Journal of Poultry Science
    • /
    • v.21 no.2
    • /
    • pp.93-99
    • /
    • 1994
  • Chickens subjected to heat stress decrease their heat production by consuming less feed. The lowered feed intake naturally brings about decreased production performance of chicken. The only exception to this is the increased survivability. Birds drink less when they eat less. In hot enviror-mental temperature, chicken need more water for increased heat loss through evaporation an increased urine excretion. Thus, the increased water intake may alleviate the heat stress of chicken. Various electrolytes supplementation to feed or drinking water can alleviate the heat stress of chicken by their effect of increasing water intake. Lasalocid, an ionophorous coccidiostat, was found to have the effect of increasing water consumption of chicken, thereby improving the lowered production performance of heat-stressed chicken. Finally, dietary fiber could be another possible element which can exert beneficial effects on heat-stressed chicken.

  • PDF

The Role of Brain Somatostatin in the Central Regulation of Feed, Water and Salt Intake in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.929-934
    • /
    • 2001
  • The physiological role of brain somatostatin in the central regulation of feed intake in sheep was investigated through a continuous intracerebroventricular (ICV) infusion of somatostastin 1-28 (SRIF) at a small dose of $5{\mu}g/0.2ml/hr$ for 98.5 hours from day 1 to day 5. Sheep (n=5) were fed for 2 hours once a day, and water and 0.5 M NaCI solution were given ad libitum. Feed, water and salt intake were measured during ICV infusion of artificial cerebrospinal fluid (CSF) and SRIF. The feed intake during SRIF infusion on days 2 to 5 increased significantly compared to that during CSF infusion. Water intake, when compared to that during CSF infusion, only increased significantly on day 4. NaCI intake during SRIF infusion was not different from that during CSF infusion. Mean arterial blood pressure (MAP) and heart rate during SRIF infusion were not different from those during CSF infusion. The plasma concentrations of Na, K, Cl, osmolality and total protein during SRIF infusion were also not different from those values during CSF infusion.There are two possible mechanisms, that is, the suppression of brain SRIF on feed suppressing hormones and the direct actions on brain mechanisms controlling feed intake, explaining how SRIF works in the brain to bring about increases in feed intake in sheep fed on hay. The results indicate that brain SRIF increases feed intake in sheep fed on hay.