• 제목/요약/키워드: Feed Forward Neural Network

검색결과 174건 처리시간 0.039초

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.

FFNN을 사용한 P2P 디바이스 디스커버리 (Device Discovery in P2P Environment using Feed Forward Neural Network)

  • 차크라;권기현;김상춘;변형기;김남용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.1223-1226
    • /
    • 2006
  • P2P(Peer to Peer) 기술은 1990년대 후반기부터 산업계 및 학계에 주목을 받고 있는 기술 분야중의 하나로 이 기술의 장점은 인터넷 환경에 산재하여 있는 컴퓨팅 파워, 공간, 네트워크 대역을 인터넷 기반으로 효과적으로 활용하여 협력작업을 가능하게 한다는데 있다. 최근에는 모바일 환경 응용을 위한 P2P 디바이스 탐색 분야에 관심사가 증대되고 있으며, P2P 시스템은 중앙통제 장치가 결여 되어 있기 때문에 중앙통제 장치 개입을 최소로 하면서 P2P를 운영하기 위한 효율적인 기법 및 체계가 요구되고 있다. 본 논문에서는 기존의 접근방법을 검토하여 FFNN(feed forward neural network)을 이용한 디바이스 탐색 기법을 제시한다. 제시한 FFNN은 BP(back propagation) 알고리즘을 통해 훈련하고 디바이스를 탐색한다. 제시한 시스템의 성능을 보이기 위해 일정한 계산량을 가지는 작업을 에이전트를 활용, 탐색된 디바이스간에 분배하여 처리한다. 본 논문에서는 제한된 자원을 가지는 디바이스 간에 P2P를 사용하는 기법에 대해 제시하였다.

  • PDF

ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF WATER QUALITY IN PIPELINE SYSTEMS

  • Kim, Ju-Hwan;Yoon, Jae-Heung
    • Water Engineering Research
    • /
    • 제4권2호
    • /
    • pp.59-68
    • /
    • 2003
  • The applicabilities and validities of two methodologies fur the prediction of THM (trihalomethane) formation in a water pipeline system were proposed and discussed. One is the multiple regression technique and the other is an artificial neural network technique. There are many factors which influence water quality, especially THMs formations in water pipeline systems. In this study, the prediction models of THM formation in water pipeline systems are developed based on the independent variables proposed by American Water Works Association(AWWA). Multiple linear/nonlinear regression models are estimated and three layer feed-forward artificial neural networks have been used to predict the THM formation in a water pipeline system. Input parameters of the models consist of organic compounds measured in water pipeline systems such as TOC, DOC and UV254. Also, the reaction time to each measuring site along pipeline is used as input parameter calculated by a hydraulic analysis. Using these variables as model parameters, four models are developed. And the predicted results from the four developed models are compared statistically to the measured THMs data set. It is shown that the artificial neural network approaches are much superior to the conventional regression approaches and that the developed models by neural network can be used more efficiently and reproduce more accurately the THMs formation in water pipeline systems, than the conventional regression methods proposed by AWWA.

  • PDF

응급실 방문 노인 환자의 사망률 예측 (Mortality Prediction of Older Adults Admitted to the Emergency Department)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.275-280
    • /
    • 2018
  • 세계 인구의 고령화가 진행되는 오늘날 노인들을 위한 의료 서비스의 수요는 점차 증가할 것으로 보인다. 특히, 응급실을 방문하는 노인 환자는 일반 환자보다 다양한 질병을 갖고 있거나, 특이한 증상을 호소하는 등 복잡한 의학적, 사회적 및 신체적 문제를 가지고 있는 경우가 많다. 우리는 65세 이상의 응급실을 방문한 노인 환자의 사망률 예측을 위해 연령, 성별, 혈압, 체온, 혈액검사, 주증상명 등의 의료 데이터를 사용하였다. Feed Forward 신경망과 지지벡터기계를 각각 학습하여 사망률을 예측하고 그 성능을 비교하였다. 1개의 은닉층을 사용한 Feed Forward 신경망의 실험결과가 가장 좋았으며, 이 때 F1 점수는 52.0%, AUC는 88.6%이다. 좀 더 좋은 의료 자질을 추출하여 제안 시스템의 성능을 향상시킨다면 응급실에 방문한 노인 환자들을 위한 효과적이고 신속한 의료 자원 배분을 통해 더 좋은 의료 서비스를 제공할 수 있을 것이다.

뉴럴 네트워크를 이용한 유도 전동기의 속도 제어 (The Speed Control of an Induction Motor Based on Neural Networks)

  • 이동빈;유창완;홍대승;고재호;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.516-518
    • /
    • 1999
  • This paper presents an feed-forward neural network design instead PI controller for the speed control of an Induction Motor. The design employs the training strategy with Neural Network Controller(NNC) and Neural Network Emulator(NNE). Emulator identifies the motor by simulating the input and output map. In order to update the weights of the Controller. Emulator supplies the error path to the output stage of the controller using backpropagation algorithm. and then Controller produces an adequate output to the system due to neural networks learning capability. Therefore it becomes adjustable to the system with changing characteristics caused by a load. The speed control based on neural networks for induction motor is implemented by a vector controlled induction motor. The simulation results demonstrate that actual motor speed with neural network system well follows the reference speed minimizing the error and is available to implement on the vector control theory.

  • PDF

Predicting the high temperature effect on mortar compressive strength by neural network

  • Yuzer, N.;Akbas, B.;Kizilkanat, A.B.
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.491-510
    • /
    • 2011
  • Before deciding if structures exposed to high temperature are to be repaired or demolished, their final state should be carefully examined. Destructive and non-destructive testing methods are generally applied for this purpose. Compressive strength and color change in mortars are observed as a result of the effects of high temperature. In this study, ordinary and pozzolan-added mortar samples were produced using different aggregates, and exposed to 100, 200, 300, 600, 900 and $1200^{\circ}C$. The samples were divided into two groups and cooled to room temperature in water and air separately. Compression tests were carried out on these samples, and the color change was evaluated by the Munsell Color System. The relationships between the change in compressive strength and color of mortars were determined by using a multi-layered feed-forward Neural Network model trained with the back-propagation algorithm. The results showed that providing accurate estimates of compressive strength by using the color components and ultrasonic pulse velocity design parameters were possible using the approach adopted in this study.

An apt material model for drying shrinkage and specific creep of HPC using artificial neural network

  • Gedam, Banti A.;Bhandari, N.M.;Upadhyay, Akhil
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.97-113
    • /
    • 2014
  • In the present work appropriate concrete material models have been proposed to predict drying shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). The ANN models are trained, tested and validated using 106 different experimental measured set of data collected from different literatures. The developed models consist of 12 input parameters which include quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN models and same implemented on MATLAB platform. The results shows that the proposed ANN models are more rational as well as computationally more efficient to predict time-dependent properties of drying shrinkage and specific creep of HPC with high level accuracy.

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

MFCC 특징벡터와 신경회로망을 이용한 프레임 기반의 수중 천이신호 식별 (Frame Based Classification of Underwater Transient Signal Using MFCC Feature Vector and Neural Network)

  • 임태균;김일환;김태환;배건성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.883-884
    • /
    • 2008
  • This paper presents a method for classification of underwater transient signals using, which employs a binary image pattern of the mel-frequency cepstral coefficients(MFCC) as a feature vector and a neural network as a classifier. A feature vector is obtained by taking DCT and 1-bit quantization for the square matrix of the MFCC sequences. The classifier is a feed-forward neural network having one hidden layer and one output layer, and a back propagation algorithm is used to update the weighting vector of each layer. Experimental results with some underwater transient signals demonstrate that the proposed method is very promising for classification of underwater transient signals.

  • PDF

인공신경망을 이용한 뿌리산업 생산공정 예측 모델 개발 (Development of Prediction Model for Root Industry Production Process Using Artificial Neural Network)

  • 박찬범;손흥선
    • 한국정밀공학회지
    • /
    • 제34권1호
    • /
    • pp.23-27
    • /
    • 2017
  • This paper aims to develop a prediction model for the product quality of a casting process. Prediction of the product quality utilizes an artificial neural network (ANN) in order to renovate the manufacturing technology of the root industry. Various aspects of the research on the prediction algorithm for the casting process using an ANN have been investigated. First, the key process parameters have been selected by means of a statistics analysis of the process data. Then, the optimal number of the layers and neurons in the ANN structure is established. Next, feed-forward back propagation and the Levenberg-Marquardt algorithm are selected to be used for training. Simulation of the predicted product quality shows that the prediction is accurate. Finally, the proposed method shows that use of the ANN can be an effective tool for predicting the results of the casting process.