• 제목/요약/키워드: Feed Forward Back-propagation

검색결과 82건 처리시간 0.02초

산란계의 전염성 기관지염을 예측하기 위한 인공신경망 모형의 개발 (Development an Artificial Neural Network to Predict Infectious Bronchitis Virus Infection in Laying Hen Flocks)

  • 박선일;권혁무
    • 한국임상수의학회지
    • /
    • 제23권2호
    • /
    • pp.105-110
    • /
    • 2006
  • 2003년 5월부터 2005년 11월까지 산란계의 전염성기관지염(IB) 예찰 프로그램에 등록한 농장에 대한 역학조사에서 얻은 자료에 근거하여 IB 감염을 확인할 수 있는 모형을 구축하기 위하여 16개의 입력 뉴런, 3 개의 은닉 뉴런, 1개의 출력 뉴런으로 구성된 3층 인공신경망 모형을 개발하였다. 총 86개의 계군 중 77개는 훈련자료에 할당하고 나머지 9개는 검정자료로 무작위로 할당하여 back-propagation algorithm으로 신경망 훈련을 수행하였다. 입력 뉴런은 산란계군의 특성, 사양관리, 계군의 크기 등 16개의 역학조사 항목을 사용하였으며 출력 뉴런은 IB 감염의 유무로 투입하였다. 훈련된 신경망을 검정자료에 적용하여 민감도와 특이도를 산출하였으며 진단의 정확도는 receiver operating characteristic (ROC) 곡선을 사용하여 곡선 밑의 면적(AUC)을 계산하여 평가하였다. 입력 뉴런의 특성과 훈련모수를 변경하면서 다양한 신경망을 구성하였으며 최적의 신경망으로 확인된 IBV_D1 신경망의 경우 훈련자료에 대하여 77건 중 73건을 올바르게 판단하여 94.8%의 정확도를 보였다. 민감도와 특이도는 각각 95.5% (42/44, 95% CI, 84.5-99.4)와 93.9% (31/33, 95% CI, 79.8-99.3)로 나타났다. 훈련된 신경망을 검정자료에 적용하여 ROC 곡선을 작성한 결과 AUC는 전체의 94.8% (SE=0.086, 95% CI 0.592-0.961)를 차지하는 우수한 모형으로 나타났다. ROC 곡선에서 기준을 0.7149 이상으로 판단할 때 진단의 정확도가 88.9%로 가장 높았으며 100%의 민감도를 달성하였다. 이러한 민감도와 특이도에서 44%의 IB 유병률을 가정할 때 IBV_D1 모형은 80%의 양성예측도와 100%의 음성예측도를 보였다. 이러한 소견에 근거할 때 본 연구에서 구축한 신경망 모형은 산란계군에서 IB의 존재를 확인하기 위한 목적에 성공적으로 응용될 수 있을 것으로 판단되었다.

인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석 (Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network)

  • 이재성;김석기;이명철;박광석;이동수
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.455-468
    • /
    • 1998
  • 이 연구에서는 간질 환자의 F-18-FDG 뇌 PET 영상을 공간정규화 기법으로 표준지도 위에 정규화한 후 표준지도의 해부학적 위치 정보를 이용하여 뇌기능영상의 영역을 자동적으로 분할하고 각 해부학적 위치의 F-18-FDG 섭취율을 추출하였다. 뇌 각 영역의 F-18-FDG 섭취율을 데이터베이스화한 것을 입력으로 하는 인공신경회로망을 구성하고 학습시켜 핵의학 전문의가 판독한 결과와 얼마나 일치되는지를 분석하였다. 핵의학 전문의 2명이 좌측측두엽간질(112명), 우측측두엽간질(81명) 혹은 정상(64명)으로 판독한 F-18-FDG 뇌 PET 영상을 대상으로, 학습의 치우침을 줄이기 위해 각 질환 군에서 동일한 수(40명)를 선택하여 학습군을 구성하고 학습군을 제외한 정상 24명, 좌측측두엽간질 72명, 우측 측두엽간질 41명의 F-18-FDG PET을 시험군으로 하였다. 모든 영상을 SPM76을 이용하여 MNI 표준지도 위에 공간정규화하고 전체 뇌영역의 평균 계수를 100으로 정규화하였다. 영역 분할 프로그램을 개발하여 표준지도를 34개 영역으로 분할하고 모든 영상에서 각 뇌영역엔 대한 평균 계수를 추출하였다. 비선형 패턴분류에 효과적인 다층퍼셉트론 신경회로망 모델을 써서 오류역전파 알고리즘으로 학습시켰다. 한 층의 은닉층을 부여하고 은닉층의 뉴런 수를 5개부터 차츰 늘려가며 최적의 개수를 선택하였다. 초기 가중치와 바이어스 값은 무작위 값을 갖게 하였다. 출력단은 세 개의 뉴런을 갖고 각 뉴런은 입력이 정상이면 [1 0 0], 좌측측두엽간질이면 [0 1 0], 우측측두엽간질이면 [0 1 0]의 값을 탐 값으로 하였다. 뉴런의 활성화 함수는 시그모이드 함수를 사용하였다. 입력단은 17개의 뉴런으로 구성하고 서로 마주보는 뇌영역의 계수 타이(오른쪽-왼쪽)를 입력으로 하였다 회로망의 학습 횟수를 10,000번으로 제한하여 오타의 허용치를 1로 설정하고 학습 횟수가 넘거나 오차가 허용치보다 작을 때 학습을 중단하게 하였다. 모멘텀과 적응형 학습율을 사용하여 신경회로망의 성능을 향상시키고 학습 속도를 빠르게 하였다. 모든 PET 영상에서 성공적으로 공간정규화 파라메터를 추출하여 표준지도에 정규화할 수 있었다 다층퍼셉트론 모델을 기반으로 한 인공신경회로망으로 27개의 은닉층 뉴런을 사용했을 때 최적의 결과를 얻을 수 있었다. 학습군에 대해서 1508번의 반복 학습을 시킨 결과 오차율 0%인 신경 회로망을 얻었으며 시험군에 대해 적용한 결과 전문가의 판독결과와 80.3%의 일치율을 보였다. 은닉층의 뉴런 수가 10개나 30개인 경우에도 학습군에 대해 오타율 0%인 신경회로망을 얻을 수 있었으며 이때의 시험군에 대한 일치율 역시 75∼80%의 값을 보였다.

  • PDF