• 제목/요약/키워드: Feature-based image matching

검색결과 339건 처리시간 0.028초

칼라 불변 기반의 특징점을 이용한 영상 모자이킹 (Image Mosaicking Using Feature Points Based on Color-invariant)

  • 권오설;이동창;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.89-98
    • /
    • 2009
  • 컴퓨터 비전 분야에서 영상 모자이킹 (Image Mosaicking)은 제한된 시야각의 카메라를 사용하여 획득한 여러 장의 중첩된 영역을 가지는 영상을 한 장의 영상으로 정합하여 나타내는 기법이다. 최근에는 연속된 영상에서 카메라의 기학학적인 움직임 때문에 발생하는 영상의 왜곡이나 밝기 차에 관계없이 정확한 정합을 수행하기 위해서 특징점을 기반으로 서술자를 구성하는 정합 방법이 많이 연구되고 있다. 그러나 대부분의 특징점 검출 알고리즘들은 영상의 밝기값 기반의 처리 과정을 수행하기 때문에 영상의 칼라 성분은 다르지만 밝기값이 비슷한 경우, 또는 동영상에서 시간의 흐름에 따라 광원이 변화하는 경우에는 광원의 영향에 따라 검출되는 특징점의 수와 각각의 지역 서술자의 특성이 변하여 정확한 대응점을 검출하는데 오류를 유발하게 된다. 이런 문제점을 해결하기 위해서 본 논문은 영상의 칼라 정보를 이용한 특징점 기반의 영상 모자이킹 방법을 제안하였다. 디지털 칼라 카메라로부터 획득한 디지털 값을 좁은 대역을 갖는 가상의 카메라 출력값으로 변환하여 물체의 분광 반사율 기반의 값으로 유도하고 이것을 광원의 변화에 불변하는 칼라 불변 값 (Color-Invariant Value)으로 정의하였다. 제안된 칼라 불변값의 유효성을 검증하기 위해서 시뮬레이션된 광원들과 Macbeth Color-Checker를 이용하여 확인하였으며, 실험결과에서 제안한 방법과 기존의 SIFT 알고리즘을 비교를 통해 제안된 방법의 정합율의 향상을 확인하였다.

적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법 (The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images)

  • 김재협;최봉준;천승우;이종민;문영식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.43-52
    • /
    • 2014
  • 본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.

인터레이스드 스캔방식 디지털 카메라의 떨림에 의한 영상블러 제거 (Deblurring of the Blurred Image Caused by the Vibration of the Interlaced Scan Type Digital Camera)

  • 전재춘
    • 한국측량학회지
    • /
    • 제23권2호
    • /
    • pp.165-175
    • /
    • 2005
  • 인터레이스 방식의 카메라가로부터 사진을 촬영시, 카메라가 움직인다면, 짝수와 홀수라인의 두 영상의 불인치인 블러가 발생한다. 본 논문은 인터레이스 방식의 카메라의 떨림에 의한 짝수와 홀수라인 영상간의 불일치를 제거하는 알고리즘을 제안하였다. 블러된 원 영상을 짝수라인과 홀수라인 영상으로 분리한다. 분리된 각 영상을 보간법을 이용하여 원 영상 크기의 영상을 생성한다. 만약 보간된 영상간의 큰 차이가 발생하면, 사진 촬영시 카메라가 움직인 경우이다 이 경우에는, 특징점 추출 및 정합, sub-pixel정합, 오류 정합된 광류제거, 영상모자이크를 통하여 불리된 두 영상으로부터 블러가 제거된 영상을 취득하는 것이다. 본 논문은 제안한 알고리즘이 카메라의 다양한 움직임의 영향으로 블러된 영상에서 선명한 영상을 생성 할 수 있음을 보였다.

색상특징과 웨이블렛 기반의 질감특징을 이용한 영상 검색 (Content-based Image Retrieval using the Color and Wavelet-based Texture Feature)

  • 박종현;박순영;조완현;오일석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권2호
    • /
    • pp.125-133
    • /
    • 2003
  • 본 논문에서는 색상과 웨이블렛 기반의 질감 특징들을 사용한 효율적인 내용기반 영상검색 방법을 제안하였다. 색상특징은 전체 영상으로부터 추출된 soft-히스토그램이 사용되며 질감 특징으로는 웨이블렛 변환의 공간 주파수 분석을 통하여 얻어진 고대역 부밴드로부터 추출된 불변 모우멘트가 이용된다. CTBTR이라 불리는 검색시스템은 질의 영상에 대한 효율적인 영상 검색을 위하여 두 단계의 유사성 정합을 수행하는데 첫 번째 정합 단계에서는 간단한 색상 히스토그램을 사용하여 질의 영상과 유사하지 않은 영상을 제거하여서 검색대상의 수를 줄이며, 두 번째 정합 단계에서는 첫 번째 단계에서 선별된 후보영상에 웨이블렛 기반의 질감특징을 적용하여 질의 영상과 유사한 영상을 검색한다. 실험결과 제안된 알고리즘이 기존의 방법보다 검색에 있어서 효율적인 계산처리와 정확한 검색을 수행하여 향상된 결과를 보여 주었다.

모바일 디바이스를 이용한 3차원 특징점 추출 기법 (3D feature point extraction technique using a mobile device)

  • 김진겸;서영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.256-257
    • /
    • 2022
  • 본 논문에서는 단일 모바일 디바이스의 움직임을 통해 3차원 특징점을 추출하는 방법에 대해 소개한다. 단안 카메라를 이용해 카메라 움직임에 따라 2D 영상을 획득하고 Baseline을 추정한다. 특징점 기반의 스테레오 매칭을 진행한다. 특징점과 디스크립터를 획득하고 특징점을 매칭한다. 매칭된 특징점을 이용해 디스패리티를 계산하고 깊이값을 생성한다. 3차원 특징점은 카메라 움직임에 따라 업데이트 된다. 마지막으로 장면 전환 검출을 이용하여 장면 전환시 특징점을 리셋한다. 위 과정을 통해 특징점 데이터베이스에 평균 73.5%의 저장공간 추가 확보를 할 수 있다. TUM Dataset의 Depth Ground truth 값과 RGB 영상으로 제안한 알고리즘을 적용하여 3차원 특징점 결과와 비교하여 평균 26.88mm의 거리 차이가 나는것을 확인하였다.

  • PDF

Patent Document Similarity Based on Image Analysis Using the SIFT-Algorithm and OCR-Text

  • Park, Jeong Beom;Mandl, Thomas;Kim, Do Wan
    • International Journal of Contents
    • /
    • 제13권4호
    • /
    • pp.70-79
    • /
    • 2017
  • Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha;Minh-Vuong Pham;Jeongki Lee;Dae-Ho Yun;Yun-Tae Kim
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.207-218
    • /
    • 2023
  • Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.

PCA-SIFT의 차원 중복점을 이용한 이미지 기반 이미지 검색 시스템 (Image-based Image Retrieval System Using Duplicated Point of PCA-SIFT)

  • 최기룡;정혜욱;이지형
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.275-279
    • /
    • 2013
  • 최근 멀티미디어 정보가 보편화됨에 따라 인터넷에서 이미지를 기반으로 정보를 검색하려는 다양한 시도가 진행되고 있다. 그러나 이미지에는 다양한 패턴이 포함되어 있기 때문에 정확하게 원하는 이미지를 찾는 것은 아직 어려움이 많다. 본 논문에서는 인터넷 쇼핑몰의 상품검색을 효율적으로 할 수 있는 이미지 기반 검색 시스템을 제안한다. 제안된 검색 방법은 SIFT(Scale Invariant Feature Transform) 알고리즘을 이용하여 이미지 검색을 위한 특징을 추출하고, PCA-SIFT를 이용하여 여러 차원에서 키포인트의 매칭을 반복하여 누적 후 사용자가 원하는 상품을 찾아준다. 제안된 방법의 효율성을 검증하기 위해, 다양한 패턴의 상품 이미지를 이용하여 기존 SIFT, PCA-SIFT 방법과 제안된 방법을 비교한 결과, 상표가 포함되지 않은 이미지의 경우 제안방법이 가장 높은 변별력을 보였으며, 효과적인 이미지 검색의 가능성을 보였다.

모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법 (A Representation and Matching Method for Shape-based Leaf Image Retrieval)

  • 남윤영;황인준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1013-1020
    • /
    • 2005
  • 본 논문은 모양 특성을 이용한 효과적인 식물 잎 이미지 검색 시스템을 제시한다. 잎 이미지의 더 효과적인 표현을 위해 개선된 MPP 알고리즘을 제안하고, 매칭에 소요되는 시간을 줄이기 위해 기존의 Nearest Neighbor(NN) 검색을 수정한 동적인 매칭 알고리즘을 제시한다. 특히, 더 나은 정확율과 효율성을 위해, 잎 모양과 잎차례를 스케치하여 질의할 수 있도록 하였다. 실험에서는 제안한 알고리즘과 기존의 알고리즘인 CCD(Centroid Contour Distance), Fourier Descriptor. Curvature Scale Space Descriptor (CSSD), Moment Invariants, MPP와 비교하였다. 1000여개의 식물 잎 이미지를 통한 실험결과는 제안한 방법이 기존의 기법보다 더 좋은 성능임을 보였다.