• Title/Summary/Keyword: Feature modeling

Search Result 639, Processing Time 0.031 seconds

Stereo Image-based 3D Modelling Algorithm through Efficient Extraction of Depth Feature (효율적인 깊이 특징 추출을 이용한 스테레오 영상 기반의 3차원 모델링 기법)

  • Ha, Young-Su;Lee, Heng-Suk;Han, Kyu-Phil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.10
    • /
    • pp.520-529
    • /
    • 2005
  • A feature-based 3D modeling algorithm is presented in this paper. Since conventional methods use depth-based techniques, they need much time for the image matching to extract depth information. Even feature-based methods have less computation load than that of depth-based ones, the calculation of modeling error about whole pixels within a triangle is needed in feature-based algorithms. It also increase the computation time. Therefore, the proposed algorithm consists of three phases, which are an initial 3D model generation, model evaluation, and model refinement phases, in order to acquire an efficient 3D model. Intensity gradients and incremental Delaunay triangulation are used in the Initial model generation. In this phase, a morphological edge operator is adopted for a fast edge filtering, and the incremental Delaunay triangulation is modified to decrease the computation time by avoiding the calculation errors of whole pixels and selecting a vertex at the near of the centroid within the previous triangle. After the model generation, sparse vertices are matched, then the faces are evaluated with the size, approximation error, and disparity fluctuation of the face in evaluation stage. Thereafter, the faces which have a large error are selectively refined into smaller faces. Experimental results showed that the proposed algorithm could acquire an adaptive model with less modeling errors for both smooth and abrupt areas and could remarkably reduce the model acquisition time.

Modeling feature inference in causal categories (인과적 범주의 속성추론 모델링)

  • Kim, ShinWoo;Li, Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.329-347
    • /
    • 2017
  • Early research into category-based feature inference reported various phenomena in human thinking including typicality, diversity, similarity effects, etc. Later research discovered that participants' prior knowledge has an extensive influence on these sorts of reasoning. The current research tested the effects of causal knowledge on feature inference and conducted modeling on the results. Participants performed feature inference for categories consisted of four features where the features were connected either in common cause or common effect structure. The results showed typicality effects along with violations of causal Markov condition in common cause structure and causal discounting in common effect structure. To model the results, it was assumed that participants perform feature inference based on the difference between the probabilities of an exemplar with the target feature and an exemplar without the target feature (that is, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$). Exemplar probabilities were computed based on causal model theory (Rehder, 2003) and applied to inference for target features. The results showed that the model predicts not only typicality effects but also violations of causal Markov condition and causal discounting observed in participants' data.

Development of Pyrolysis Equipment to Depolymerize the Waste Tire (폐타이어의 열분해장치 개발)

  • Kim, Tae-Kyu;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1208-1213
    • /
    • 2007
  • Some structural problems and temperature difference of the pyrolysis equipment were improved by using the structure analysis and the optimal design of torch. The pyrolysis equipment developed in this study is expected to the excellent pyrolysis effect. To modify user-friendly the dimension of a part, we developed the feature modeling system that all of the related parts automatically change applying to the three-dimensional modeling method.

Surface Modeling and 5-axis NC machining of Automobile Tire Model (자동차 타이어 모델의 곡면 모델링 및 5축 NC 가공)

  • Lee, Cheol-Soo
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.129-141
    • /
    • 1996
  • Recently, the tire mold of a passenger car is made almost via aluminum casting, and it is necessary to prepare a master model of the tire for the casting. Because of the geometrical feature of tire, as well known, the master model must be machined by a 5-axis NC machine. The paper proposes a procedure to model and machine the master model. The approach includes (a) transformation of 2D drawing of tire into 3D geometry, (b) modeling surfaces of tire, and (c) inverse kinematics of a 5-axis NC machine. An implementation of the proposed procedure is also presented.

  • PDF

Modeling FORM Architectures Based on UML 2.0 Profiling (UML 2.0 프로파일링을 이용한 FORM 아키텍처 모델링)

  • Yang, Kyung-Mo;Jo, Yoon-Ho;Kang, Kyo-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.6
    • /
    • pp.431-442
    • /
    • 2009
  • The Software Product Line (SPL) engineering is one of the most promising software development paradigms. With Feature-Oriented Reuse Method (FORM), reusable and flexible components can be built to aid the delivery of various software products such as mobile phone and digital TV applications based on commonalities and variabilities identified during Feature modeling. Model Driven Architecture (MDA) is also an emerging technology which supports developing software products to work on different platforms with platform independent models (PIM). Combining advantages of these two approaches is helpful to build a group of software products which share common Features while working on various platforms. As first step to combine FORM with MDA, we extend UML2.0 with profiles by which FORM architectures and parameterized Statecharts can be modeled. Secondly, we provide rules to examine whether Features are allocated at positions of elements of Statecharts consistently between a Feature model and a parameterized Statechart. Some rules are designed to check the consistency between FORM architectures and parameterized Statecharts. A case study on an elevator control system is provided to demonstrate the feasibility of our modeling approach and consistency checking rules.

Modeling of Various Digital Leaves Using Feature-based Image Warping (특징기반 영상 워핑을 활용한 다양한 디지털 잎 모델링)

  • Kim, Jin-Mo
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.235-244
    • /
    • 2015
  • This study proposes a leaf modeling method that uses feature-based warping for efficient generation of various digital leaves. The proposed method uses warping method, one of image processing application techniques that can control various shapes of leaves in an easy, intuitive way, and generate natural patterns of veins efficiently. First, information on approximated contour is detected from a leaf blade image to identify the shape of a blade. Based on this, control line is automatically calculated to be used for feature-based warping. Then, control line-based warping is conducted to modify forms of leaf blade images in an intuitive way, automatically generating leaves of various shapes. And natural vein patterns are generated by applying a contour-based venation growth algorithm from contour information of the modified leaf blade images. This study performs experiments to verify whether various shape of leaves that comprise plants can be efficiently generated using a sample binary image of a blade. Also, we demonstrate that express the natural growth of leaves by applying warping to the growth of the leaf blade.

Pulse Diagnosis Algorithm and Digital Filter Design for Development of Digital Biomedical System (전자 맥진기 시스템 개발을 위한 맥파분석 알고리즘과 디지털 필터 설계)

  • Kim, Sang-Ho;Lim, Duk-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4473-4482
    • /
    • 2010
  • The examination of pulse, which is a typical palpation technique in the oriental medicine, has been used conventional analog system for discrimination of 28 pulses. However, the clipping phenomenon in the pulses, which used same feature extraction technique with ECG signals, has been occurred in analog system due to feature extraction method and over amplification from the input signals. It caused inaccurate to analyze the pulse signals. In this paper, we propose a digital filter design technique based on Prony's method for signal modeling and C-spline interpolation for feature extraction from pulse signal to compensate analog pulse detection system. In addition, we suggest a compensated electronic pulse detection system comprising new pulse analyzing algorithm and shape analysis technique for pulses, which were difficult to use in analog system. The feasibility for new proposed system has been confirmed comparing output signals between electronic pulse detection system having proposed filter design techniques with pulse analyzing algorithm and conventional analog system.

A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning (토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구)

  • Yuk, JeeHee;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.63-88
    • /
    • 2018
  • This research evaluated differences of classification performance for feature selection methods using LDA topic model and Doc2Vec which is based on word embedding using deep learning, feature corpus sizes and classification algorithms. In addition to find the feature corpus with high performance of classification, an experiment was conducted using feature corpus was composed differently according to the location of the document and by adjusting the size of the feature corpus. Conclusionally, in the experiments using deep learning evaluate training frequency and specifically considered information for context inference. This study constructed biomedical document dataset, Disease-35083 which consisted biomedical scholarly documents provided by PMC and categorized by the disease category. Throughout the study this research verifies which type and size of feature corpus produces the highest performance and, also suggests some feature corpus which carry an extensibility to specific feature by displaying efficiency during the training time. Additionally, this research compares the differences between deep learning and existing method and suggests an appropriate method by classification environment.

Security Analysis based on Differential Entropy m 3D Model Hashing (3D 모델 해싱의 미분 엔트로피 기반 보안성 분석)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.995-1003
    • /
    • 2010
  • The content-based hashing for authentication and copy protection of image, video and 3D model has to satisfy the robustness and the security. For the security analysis of the hash value, the modelling method based on differential entropy had been presented. But this modelling can be only applied to the image hashing. This paper presents the modelling for the security analysis of the hash feature value in 3D model hashing based on differential entropy. The proposed security analysis modeling design the feature extracting methods of two types and then analyze the security of two feature values by using differential entropy modelling. In our experiment, we evaluated the security of feature extracting methods of two types and discussed about the trade-off relation of the security and the robustness of hash value.

Precision shape modeling by z-map model

  • Park, Jung-Whan;Chung, Yun-Chan;Choi, Byoung-Kyn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • The Z-map is a special farm of discrete non-parametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[ij]. While the z-map is the simplest farm of representing sculptured surfaces and is the most versatile scheme for modeling non-parametric objects, its practical application in industry (eg, tool-path generation) has aroused much controversy over its weaknesses, namely its inaccuracy, singularity (eg, vertical wall), and some excessive storage needs. Much research or the application of the z-map can be found in various articles, however, research on the systematic analysis of sculptured surface shape representation via the z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) z-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary z-map models, and some application examples.