• Title/Summary/Keyword: Feature conversion

Search Result 154, Processing Time 0.027 seconds

Automatic Conversion of Machining Data by the Feature Recognition of Press Mold (프레스 금형의 특징형상 인식에 의한 가공데이타 자동변환)

  • Choi, Hong-Tae;Bahn, Kab-Soo;Lee, Seok-Hee
    • IE interfaces
    • /
    • v.7 no.3
    • /
    • pp.181-191
    • /
    • 1994
  • This paper presents an automatic conversion of machining data from the orthographic views of press mold by feature recognition rule. The system includes following 6 modules : separation of views, function support, dimension text check and feature processing modules. The characteristic of this system is that with minimum user intervention, it recognizes basic features such as holes, slots, pockets and clamping parts and thus automatically converts CAD drawing details of press mold into machining data using 2D CAD system instead of using an expensive 3D Modeler. The system is developed by using IBM-PC in the environment of AutoCAD R12, AutoLISP and MetaWare High C. Performance of the system is verified as a good interfacing of CAD and CAM when applied to a lot of sample drawing.

  • PDF

Manufacturing Feature Extraction for Sculptured Pocket Machining (Sculptured 포켓 가공을 위한 가공특징형상 추출)

  • 주재구;조현보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.455-459
    • /
    • 1997
  • A methodology which supports the feature used from design to manufacturing for sculptured pocket is newly devlored and present. The information contents in a feature can be easily conveyed from one application to another in the manufacturing domain. However, the feature generated in one application may not be directly suitable for another whitout being modified with more information. Theobjective of the paper is to parsent the methodology of decomposing a bulky feature of sculptured pocket to be removed into compact features to be efficiently machined. In particular, the paper focuses on the two task: 1) to segment horizontally a bulky feature into intermediate features by determining the adequate depth of cut and cutter size and to generate the temporal precedence graph of the intermediate features and 2)to further decompose each intermediate feature vertical into smaller manufacturing features and to apply the variable feed rate to each small feature. The proposed method will provid better efficiency in machining time and cost than the classical method which uses a long string of NC codes necessary to remove a bulky fecture.

  • PDF

Zero-shot voice conversion with HuBERT

  • Hyelee Chung;Hosung Nam
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.69-74
    • /
    • 2023
  • This study introduces an innovative model for zero-shot voice conversion that utilizes the capabilities of HuBERT. Zero-shot voice conversion models can transform the speech of one speaker to mimic that of another, even when the model has not been exposed to the target speaker's voice during the training phase. Comprising five main components (HuBERT, feature encoder, flow, speaker encoder, and vocoder), the model offers remarkable performance across a range of scenarios. Notably, it excels in the challenging unseen-to-unseen voice-conversion tasks. The effectiveness of the model was assessed based on the mean opinion scores and similarity scores, reflecting high voice quality and similarity to the target speakers. This model demonstrates considerable promise for a range of real-world applications demanding high-quality voice conversion. This study sets a precedent in the exploration of HuBERT-based models for voice conversion, and presents new directions for future research in this domain. Despite its complexities, the robust performance of this model underscores the viability of HuBERT in advancing voice conversion technology, making it a significant contributor to the field.

Melanoma Classification Algorithm using Gray-level Conversion Matrix Feature and Support Vector Machine (회색도 변환 행렬 특징과 SVM을 이용한 흑색종 분류 알고리즘)

  • Koo, Jung Mo;Na, Sung Dae;Cho, Jin-Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2018
  • Recently, human life is getting longer due to change of living environment and development of medical technology, and silver medical technology has been in the limelight. Geriatric skin disease is difficult to detect early, and when it is missed, it becomes a malignant disease and is difficult to treatment. Melanoma is one of the most common diseases of geriatric skin disease and initially has a similar modality with the nevus. In order to overcome this problem, we attempted to perform a feature analysis in order to attempt automatic detection of melanoma-like lesions. In this paper, one is first order analysis using information of pixels in radiomic feature. The other is a gray-level co-occurrence matrix and a gray level run length matrix, which are feature extraction methods for converting image information into a matrix. The features were extracted through these analyses. And classification is implemented by SVM.

3D Geometric Reasoning for Solid Model Conversion and Feature Recognition (솔리드 모델 변환과 특징형상인식을 위한 기하 추론)

  • Han, Jeonghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • Solid modeling refers to techniques for unambiguous representations of three- dimensional objects. The most widely used techniques for solid modeling have been Constructive Solid Geometry (CSG) and Boundary Representation (BRep). Contemporary solid modeling systems typically support both representations, and bilateral conversions between CSG and BRep are essential. However, computing a CSG from a BRep is largely an open problem. This paper presents 3D geometric reasoning algorithms for converting a BRep into a special CSG, called Destructive Solid Geometry (DSG) whose Boolean operations are all subtractions. The major application area of BRep-to-DSG conversion is feature recognition, which is essential for integrating CAD and CAM.

  • PDF

Infrared Visual Inertial Odometry via Gaussian Mixture Model Approximation of Thermal Image Histogram (열화상 이미지 히스토그램의 가우시안 혼합 모델 근사를 통한 열화상-관성 센서 오도메트리)

  • Jaeho Shin;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2023
  • We introduce a novel Visual Inertial Odometry (VIO) algorithm designed to improve the performance of thermal-inertial odometry. Thermal infrared image, though advantageous for feature extraction in low-light conditions, typically suffers from a high noise level and significant information loss during the 8-bit conversion. Our algorithm overcomes these limitations by approximating a 14-bit raw pixel histogram into a Gaussian mixture model. The conversion method effectively emphasizes image regions where texture for visual tracking is abundant while reduces unnecessary background information. We incorporate the robust learning-based feature extraction and matching methods, SuperPoint and SuperGlue, and zero velocity detection module to further reduce the uncertainty of visual odometry. Tested across various datasets, the proposed algorithm shows improved performance compared to other state-of-the-art VIO algorithms, paving the way for robust thermal-inertial odometry.

Analysis of the Construction Cost Prediction Performance according to Feature Scaling and Log Conversion of Target Variable (피처 스케일링과 타겟변수 로그변환에 따른 건축 공사비 예측 성능 분석)

  • Kang, Yoon-Ho;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.317-326
    • /
    • 2022
  • With the development of various technologies in the area of artificial intelligence, a number of studies to application of artificial intelligence technology in the construction field are underway. Diverse technologies have been applied to the task of predicting construction costs, and construction cost prediction technologies applying artificial intelligence technologies have recently been developed. However, it is difficult to secure the vast amount of construction cost data required for machine learning, which has not yet been practically used. In this study, to predict the construction cost, the latest artificial neural network(ANN) method is used to propose a method to improve the construction cost prediction performance. In particular, to improve predictive performance, a log conversion method of target variables and a feature scaling method to eliminate the difference in the relative influence of each column data are applied, and their performance in predicting construction cost is compared and analyzed.

A Comparative Study on Object Recognition about Performance and Speed (물체 인식의 성능 및 속도 개선 방향에 대한 비교 연구)

  • Kim, Jun-Chul;Kim, Hak-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1055-1056
    • /
    • 2008
  • In this paper, we survey various Robust Object Recognition Algorithms. One of the core technologies for local feature detector is Scale Invariant Feature Transform. And we compared several algorithms with SIFT based on IPP technology. As a result, the conversion of source codes using IPP is sped up. And this will be more improved recognition speed using SIMD Instructions.

  • PDF

A Study on CAD interfaced CAPP System for Turning Operation ( I ) : Automatic Feature Recognition and Process Selection (선삭공정에서 CAD 인터페이스된 자동공정계획시스템개발에 관한 연구( I ) : 형상특징의 자동인식과 공정선정)

  • Cho, Kyu-Kap;Kim, In-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-16
    • /
    • 1991
  • This paper deals with some critical activities of CAPP system such as generation of part description database, part feature recognition, process and operation selection, and sequencing method for turning operation of symmetric rotational parts. The part description database is generated by data conversion module from CAD data, and the part feature is recognized by using both pattern primitives and feature recognition rules. Machining processes and operations are selected based on machining surface features and its sequence is determined by rules acquired from process planning expert. AutoCAD is employed as CAD system and computer program is developed by using Turbo-C on IBM PC/AT compatible system.

  • PDF

Recommended Practice for the Assessment of Transformer Capacity by the Forecasting of Peak Power in Industrial Customers (산업용전력사용고객의 최대전력 예측에 의한 변압기용량 산정에 관한 연구)

  • Kim, Se-Dong;Shin, Hwa-Young
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.383-386
    • /
    • 2009
  • Contract power conversion factor which is applied to estimate contract power of industrial customers is an important standard to calculate transformer capacity. This paper shows a reasonable contract power conversion factor, that was made by the systematic and statistical way considering actual conditions, such as investigated contract power and peak power for the last 5 years of each customer for industrial customers as to AMR system. In this dissertation, it is necessary to analyze the key features and general trend from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum. minimum and thus it was carried the linear and nonlinear regression analysis. Therefore, this paper compared characteristics for a contract power conversion factor which is applied to calculate contract power with characteristics for a regression model for customers which maximum utilization factor of transformer is more than 60%.

  • PDF