• Title/Summary/Keyword: Feature based Manufacturing

Search Result 171, Processing Time 0.03 seconds

Machine-Part Cell Formation based on Kohonen화s Self Organizing Feature Map (Kohonen 자기조직화 map 에 기반한 기계-부품군 형성)

  • ;;山川 烈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.315-318
    • /
    • 1996
  • The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.

  • PDF

A Study on Feature-Based Multi-Resolution Modelling - Part I: Effective Zones of Features (특징형상기반 다중해상도 모델링에 관한 연구 - Part I: 특징형상의 유효영역)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.432-443
    • /
    • 2005
  • Recent three-dimensional feature-based CAD systems based on solid or non-manifold modelling functionality have been widely used for product design in manufacturing companies. When product models associated with features are used in various downstream applications such as analysis, however, simplified and abstracted models at various levels of detail (LODs) are frequently more desirable and useful than the full detailed model. To provide multi-resolution models, the features need to be rearranged according to a criterion that measures the significance of the feature. However, if the features are rearranged, the resulting shape is possibly different from the original because union and subtraction Boolean operations are not commutative. To solve this problem, in this paper, the new concept of the effective zone of a feature is defined and identified using Boolean algebra. By introducing the effective zone, an arbitrary rearrangement of features becomes possible and arbitrary LOD criteria may be selected to suit various applications. Besides, because the effective zone of a feature is independent of the data structure of the model, the multi-resolution modelling algorithm based on the effective zone can be implemented on any 3D CAD system based on conventional solid representations as well as non-manifold topological (NMT) representations.

Nonlinear Tolerance Allocation for Assembly Components (조립품을 위한 비선형 공차할당)

  • Kim, Kwang-Soo;Choi, Hoo-Gon
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

Metal pad Discolored Image Classification Algorithm using Geometric Texture Information (기하학적 텍스쳐 정보를 이용한 금속 패드 변색영상 분류 알고리즘)

  • Cui, Xue Nan;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.469-475
    • /
    • 2010
  • This paper presents a method of classifying discolored defects of metal pads using geometric texture for AFVI (Automated Final Vision Inspection) systems. In PCB manufacturing process, the metal pads on PCB can be oxidized and discolored partly due to various environmental factors. Nowadays the discolored defects are manually detected and rejected from the process. This paper proposes an efficient geometric texture feature, SUTF (Symmetry and Uniformity Texture Feature) based on the symmetric and uniform textural characteristics of the surface of circular metal pads for automating AFVI systems. In practical experiments with real samples acquired from a production line, 30 discolored images and 1232 roughness images are tested. The experimental results demonstrate that the proposed method using SUTFs provides better performance compared to Gabor feature with 0% FNR (False Negative Rate) and 1.46% FPR (False Positive Rate). The performance of the proposed method shows its applicability in the real manufacturing systems.

A basic research for knowledge-based management of feature recognition rules (형상인식 규칙의 지식 베이스 운용에 관한 연구)

  • 박재홍;반갑수;이석희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.715-719
    • /
    • 1991
  • In manufacturing process, usually 2-dimensional part drawing is used as a basic data. If a designer wants to recognize 2-dimensional drawing and formulate 3-dimensional shape, a proper feature recognition rule is required as a prerequisite step. These rules are converted Into knowledge base, should be ed separately in the recognition program and can be referenced In similar way of database application. In this paper, basic feature recognition rules are addressed in structure type knowledge base, and the application system is formulated which can be operated separately with existing data driven program.

  • PDF

A Study of Feature-Based Computer-Aided Inspection Planning System (특징 형상기반의 CAIP에 관한 연구)

  • 윤길상;조명우;이홍희
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.15-23
    • /
    • 2003
  • A feature-based inspection planning system is proposed in this research to develop more efficient measuring methodology for the OMM(On-Machine Measurement) or CMM(coordinate Measuring Machine) for complicated workpiece having many primitive form features. This paper is proposed solution that optimum inspection sequence of the objective features. The sequences are determined by analyzing the feature information such as the nearest relationship and the possible probe-approach direction(PAD) of the features, and forming feature groups. A series of heuristic rules are developed to accomplish it. Also, each feature is decomposed into its constituent geometric elements for inspection process, and then the number of sampling points, location of the measuring points, optimum probing path are determined.

A feature based Computer Aided Inspection Planning system (형상기반의 CAIP 시스템 개발)

  • 윤길상;조명우;이홍희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.353-358
    • /
    • 2002
  • A feature-based inspection planning system is proposed in this research to develop more efficient measuring methodology for the OMM (On-machine measurement) for complicated workpiece having many primitive form features. This paper focuses on the development of the CAIP (computer-aided inspection system) methodologies. The optimum inspection sequences for the features are determined by analyzing the feature information such as the nested relations and the possible probe approaching directions of the features, and forming feature groups. A series of heuristic rules are developed to accomplish it. Also, each feature is decomposed into its constituent geometric elements, and then the number of sampling points, the locations of the measuring point, the optimum probing path are determined by applying the fuzzy logic, Hammersley's method, and the TSP algorithm. To verify the proposed methodologies, simulations are carried out and the results are analyzed.

  • PDF

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.