• Title/Summary/Keyword: Feature Tracking

Search Result 572, Processing Time 0.03 seconds

Analysis of Facial Movement According to Opposite Emotions (상반된 감성에 따른 안면 움직임 차이에 대한 분석)

  • Lee, Eui Chul;Kim, Yoon-Kyoung;Bea, Min-Kyoung;Kim, Han-Sol
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, a study on facial movements are analyzed in terms of opposite emotion stimuli by image processing of Kinect facial image. To induce two opposite emotion pairs such as "Sad - Excitement"and "Contentment - Angry" which are oppositely positioned onto Russell's 2D emotion model, both visual and auditory stimuli are given to subjects. Firstly, 31 main points are chosen among 121 facial feature points of active appearance model obtained from Kinect Face Tracking SDK. Then, pixel changes around 31 main points are analyzed. In here, local minimum shift matching method is used in order to solve a problem of non-linear facial movement. At results, right and left side facial movements were occurred in cases of "Sad" and "Excitement" emotions, respectively. Left side facial movement was comparatively more occurred in case of "Contentment" emotion. In contrast, both left and right side movements were occurred in case of "Angry" emotion.

A Study on Tracking Method for Command and Control Framework Tools (명령 제어 프레임워크 (Command and Control Framework) 도구 추적 방안에 대한 연구)

  • Hyeok-Ju Gwon;Jin Kwak
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.721-736
    • /
    • 2023
  • The Command and Control Framework was developed for penetration testing and education purposes, but threat actors such as cybercrime groups are abusing it. From a cyber threat hunting perspective, identifying Command and Control Framework servers as well as proactive responding such as blocking the server can contribute to risk management. Therefore, this paper proposes a methodology for tracking the Command and Control Framework in advance. The methodology consists of four steps: collecting a list of Command and Control Framework-related server, emulating staged delivery, extracting botnet configurations, and collecting certificates that feature is going to be extracted. Additionally, experiments are conducted by applying the proposed methodology to Cobalt Strike, a commercial Command and Control Framework. Collected beacons and certificate from the experiments are shared to establish a cyber threat response basis that could be caused from the Command and Control Framework.

Design and Implementation of Eye-Gaze Estimation Algorithm based on Extraction of Eye Contour and Pupil Region (눈 윤곽선과 눈동자 영역 추출 기반 시선 추정 알고리즘의 설계 및 구현)

  • Yum, Hyosub;Hong, Min;Choi, Yoo-Joo
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this study, we design and implement an eye-gaze estimation system based on the extraction of eye contour and pupil region. In order to effectively extract the contour of the eye and region of pupil, the face candidate regions were extracted first. For the detection of face, YCbCr value range for normal Asian face color was defined by the pre-study of the Asian face images. The biggest skin color region was defined as a face candidate region and the eye regions were extracted by applying the contour and color feature analysis method to the upper 50% region of the face candidate region. The detected eye region was divided into three segments and the pupil pixels in each pupil segment were counted. The eye-gaze was determined into one of three directions, that is, left, center, and right, by the number of pupil pixels in three segments. In the experiments using 5,616 images of 20 test subjects, the eye-gaze was estimated with about 91 percent accuracy.

  • PDF

Automatic Detection of Dissimilar Regions through Multiple Feature Analysis (다중의 특징 분석을 통한 비 유사 영역의 자동적인 검출)

  • Jang, Seok-Woo;Jung, Myunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.160-166
    • /
    • 2020
  • As mobile-based hardware technology develops, many kinds of applications are also being developed. In addition, there is an increasing demand to automatically check that the interface of these applications works correctly. In this paper, we describe a method for accurately detecting faulty images from applications by comparing major characteristics from input color images. For this purpose, our method first extracts major characteristics of the input image, then calculates the differences in the extracted major features, and decides if the test image is a normal image or a faulty image dissimilar to the reference image. Experiment results show that the suggested approach robustly determines similar and dissimilar images by comparing major characteristics from input color images. The suggested method is expected to be useful in many real application areas related to computer vision, like video indexing, object detection and tracking, image surveillance, and so on.

Robust Real-Time Visual Odometry Estimation for 3D Scene Reconstruction (3차원 장면 복원을 위한 강건한 실시간 시각 주행 거리 측정)

  • Kim, Joo-Hee;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.187-194
    • /
    • 2015
  • In this paper, we present an effective visual odometry estimation system to track the real-time pose of a camera moving in 3D space. In order to meet the real-time requirement as well as to make full use of rich information from color and depth images, our system adopts a feature-based sparse odometry estimation method. After matching features extracted from across image frames, it repeats both the additional inlier set refinement and the motion refinement to get more accurate estimate of camera odometry. Moreover, even when the remaining inlier set is not sufficient, our system computes the final odometry estimate in proportion to the size of the inlier set, which improves the tracking success rate greatly. Through experiments with TUM benchmark datasets and implementation of the 3D scene reconstruction application, we confirmed the high performance of the proposed visual odometry estimation method.

Online Face Pose Estimation based on A Planar Homography Between A User's Face and Its Image (사용자의 얼굴과 카메라 영상 간의 호모그래피를 이용한 실시간 얼굴 움직임 추정)

  • Koo, Deo-Olla;Lee, Seok-Han;Doo, Kyung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.25-33
    • /
    • 2010
  • In this paper, we propose a simple and efficient algorithm for head pose estimation using a single camera. First, four subimages are obtained from the camera image for face feature extraction. These subimages are used as feature templates. The templates are then tracked by Kalman filtering, and camera projective matrix is computed by the projective mapping between the templates and their coordinate in the 3D coordinate system. And the user's face pose is estimated from the projective mapping between the user's face and image plane. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences.

The design and implementation of Object-based bioimage matching on a Mobile Device (모바일 장치기반의 바이오 객체 이미지 매칭 시스템 설계 및 구현)

  • Park, Chanil;Moon, Seung-jin
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • Object-based image matching algorithms have been widely used in the image processing and computer vision fields. A variety of applications based on image matching algorithms have been recently developed for object recognition, 3D modeling, video tracking, and biomedical informatics. One prominent example of image matching features is the Scale Invariant Feature Transform (SIFT) scheme. However many applications using the SIFT algorithm have implemented based on stand-alone basis, not client-server architecture. In this paper, We initially implemented based on client-server structure by using SIFT algorithms to identify and match objects in biomedical images to provide useful information to the user based on the recently released Mobile platform. The major methodological contribution of this work is leveraging the convenient user interface and ubiquitous Internet connection on Mobile device for interactive delineation, segmentation, representation, matching and retrieval of biomedical images. With these technologies, our paper showcased examples of performing reliable image matching from different views of an object in the applications of semantic image search for biomedical informatics.

A Recognition Framework for Facial Expression by Expression HMM and Posterior Probability (표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크)

  • Kim, Jin-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.284-291
    • /
    • 2005
  • I propose a framework for detecting, recognizing and classifying facial features based on learned expression patterns. The framework recognizes facial expressions by using PCA and expression HMM(EHMM) which is Hidden Markov Model (HMM) approach to represent the spatial information and the temporal dynamics of the time varying visual expression patterns. Because the low level spatial feature extraction is fused with the temporal analysis, a unified spatio-temporal approach of HMM to common detection, tracking and classification problems is effective. The proposed recognition framework is accomplished by applying posterior probability between current visual observations and previous visual evidences. Consequently, the framework shows accurate and robust results of recognition on as well simple expressions as basic 6 facial feature patterns. The method allows us to perform a set of important tasks such as facial-expression recognition, HCI and key-frame extraction.

Gaze Detection Based on Facial Features and Linear Interpolation on Mobile Devices (모바일 기기에서의 얼굴 특징점 및 선형 보간법 기반 시선 추적)

  • Ko, You-Jin;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1089-1098
    • /
    • 2009
  • Recently, many researches of making more comfortable input device based on gaze detection technology have been performed in human computer interface. Previous researches were performed on the computer environment with a large sized monitor. With recent increase of using mobile device, the necessities of interfacing by gaze detection on mobile environment were also increased. In this paper, we research about the gaze detection method by using UMPC (Ultra-Mobile PC) and an embedded camera of UMPC based on face and facial feature detection by AAM (Active Appearance Model). This paper has following three originalities. First, different from previous research, we propose a method for tracking user's gaze position in mobile device which has a small sized screen. Second, in order to detect facial feature points, we use AAM. Third, gaze detection accuracy is not degraded according to Z distance based on the normalization of input features by using the features which are obtained in an initial user calibration stage. Experimental results showed that gaze detection error was 1.77 degrees and it was reduced by mouse dragging based on the additional facial movement.

  • PDF

Realistic 3D Scene Reconstruction from an Image Sequence (연속적인 이미지를 이용한 3차원 장면의 사실적인 복원)

  • Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.183-188
    • /
    • 2010
  • A factorization-based 3D reconstruction system is realized to recover 3D scene from an image sequence. The image sequence is captured from uncalibrated perspective camera from several views. Many matched feature points over all images are obtained by feature tracking method. Then, these data are supplied to the 3D reconstruction module to obtain the projective reconstruction. Projective reconstruction is converted to Euclidean reconstruction by enforcing several metric constraints. After many triangular meshes are obtained, realistic reconstruction of 3D models are finished by texture mapping. The developed system is implemented in C++, and Qt library is used to implement the system user interface. OpenGL graphics library is used to realize the texture mapping routine and the model visualization program. Experimental results using synthetic and real image data are included to demonstrate the effectiveness of the developed system.