특징 집합 선택은 학습 알고리즘의 전처리 과정으로 사용되기도 한다. 수집된 자료가 문제와 관련이 없다거나 중복된 정보를 갖고 있는 경우, 이를 학습 모델생성 이전에 제거함으로써 학습의 성능을 향상시킬 수 있다. 또한 탐색 공간을 감소시킬 수 있으며 저장 공간도 줄일 수 있다. 본 논문에서는 특징 집합의 추출과 추출된 특징 집합의 성능 평가를 위하여 엔트로피를 기반으로 한 휴리스틱 함수를 사용하는 새로운 특징 선택 알고리즘을 제안하였다. 탐색 방법으로는 ACS 알고리즘을 이용하였다. 그 결과 학습에 사용될 특징의 차원을 감소시킴으로써 학습 모델의 크기와 불필요한 계산 시간을 감소시킬 수 있었다.
본 논문에서는 BPSO(Binary Particle Swarm Optimization)방법과 상호정보량을 이용한 속성선택기법을 제안한다. 제안된 방법은 상호정보량을 이용한 후보속성부분집합을 선택하는 단계와 BPSO를 이용한 최적의 속성부분집합을 선택하는 단계로 구성되어 있다. 후보속성부분집합 선택 단계에서는 독립적으로 속성들의 상호정보량을 평가하여 순위별로 설정된 수 만큼 후보속성들을 선택한다. 최적속성부분집합 선택 단계에서는 BPSO를 이용하여 후보속성부분집합에서 최적의 속성부분집합을 탐색한다. BPSO의 목적함수는 분류기의 정확도와 선택된 속성 수를 포함하는 다중목적함수(Multi-Object Function)을 이용하였다. 제안된 기법의 성능을 평가하기 위하여 유전자 데이터를 사용하였으며, 실험결과 기존의 방법들에 비해 우수한 성능을 보임을 알 수 있었다.
데이터로부터 학습하여 룰을 추출하는 귀납적 학습기법은 데이터 마이닝의 주요 도구 중 하나이다. 귀납적 학습 기법은 불필요한 변수나 잡음이 섞인 변수를 포함하여 학습하는 경우 생성된 룰의 예측 성능이 떨어지고 불필요하게 룰이 복잡하게 구성될 수 있다. 따라서 귀납적 학습 기법의 예측력을 높이고 룰의 구성도 간단하게 할 수 있는 주요 변수 부분집합을 선정하는 방안이 필요하다. 귀납적 학습에서 예측력을 높이기 위해 많이 사용되는 부분집합 선정을 위한 포장 기법은 최적의 부분집합을 찾기 위해 전체 부분집합을 탐색한다. 이때 전체 변수의 수가 많아지면 부분집합의 탐색 공간이 너무 커져서 탐색하기 어려운 문제가 된다. 본 연구에서는 포장 기법에 신경망 민감도 분석을 결합한 귀납적 학습 기법의 변수 부분집합 선정 방안을 제시한다. 먼저, 신경망의 민감도 분석 기법을 이용하여 전체 변수를 중요도 순으로 순서화 한다. 다음에 순서화된 정보를 이용하여 귀납적 학습 기법의 예측력을 높일 수 있는 부분집합을 찾아 나간다. 제안된 방법을 세 데이터 셋에 적용한 결과 일정한 반복 회수 이내에 예측력이 향상된 부분집합을 얻을 수 있음을 볼 수 있다.
Journal of information and communication convergence engineering
/
제13권2호
/
pp.113-122
/
2015
Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.
특징 선택은 기계 학습 및 패턴 인식 분야에서 중요한 이슈 중 하나로, 분류 정확도를 향상시키기 위해 원본 데이터가 주어졌을 때 가장 좋은 성능을 보여줄 수 있는 데이터의 부분집합을 찾아내는 방법이다. 즉, 분류기의 분류 목적에 가장 밀접하게 연관되어 있는 특징들만을 추출하여 새로운 데이터를 생성하는 것이다. 본 논문에서는 소프트웨어 재사용의 성공 요인과 실패 요인에 대한 분류 정확도를 향상시키기 위해 특징 부분 집합을 찾는 실험을 하였다. 그리고 기존 연구들과 비교 분석한 결과 본 논문에서 찾은 특징 부분 집합으로 분류했을 때 가장 좋은 분류 정확도를 보임을 확인하였다.
특징선택은 데이터 마이닝, 기계학습 분야에서 가장 중요한 이슈 중 하나로, 원본 데이터에서 가장 좋은 분류 성능을 보여줄 수 있는 특징들을 찾아내는 방법이다. 본 논문에서는 정보 입자성을 기반으로 한 neighborhood 러프집합 모델을 이용한 특징선택 방법을 제안한다. 제안된 방법의 효과성은 5,252명의 유방 초음파 영상으로부터 추출된 298가지의 특징들 중에서 유방 종양의 진단과 관련된 유용한 특징들을 선택하는 문제에 적용되었다. 실험결과 19가지의 진단적 특징을 찾을 수 있었고, 이때에 평균 분류 정확성은 97.6%를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.3972-3988
/
2020
Existing methods always rely on statistical features to extract local words for microblog user geolocation. There are many non-local words in extracted words, which makes geolocation accuracy lower. Considering the statistical and semantic features of local words, this paper proposes a microblog user geolocation method by extracting local words based on word clustering and wrapper feature selection. First, ordinary words without positional indications are initially filtered based on statistical features. Second, a word clustering algorithm based on word vectors is proposed. The remaining semantically similar words are clustered together based on the distance of word vectors with semantic meanings. Next, a wrapper feature selection algorithm based on sequential backward subset search is proposed. The cluster subset with the best geolocation effect is selected. Words in selected cluster subset are extracted as local words. Finally, the Naive Bayes classifier is trained based on local words to geolocate the microblog user. The proposed method is validated based on two different types of microblog data - Twitter and Weibo. The results show that the proposed method outperforms existing two typical methods based on statistical features in terms of accuracy, precision, recall, and F1-score.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권10호
/
pp.5132-5148
/
2017
Cyber attacks are evolving commensurate with recent developments in information security technology. Intrusion detection systems collect various types of data from computers and networks to detect security threats and analyze the attack information. The large amount of data examined make the large number of computations and low detection rates problematic. Feature selection is expected to improve the classification performance and provide faster and more cost-effective results. Despite the various feature selection studies conducted for intrusion detection systems, it is difficult to automate feature selection because it is based on the knowledge of security experts. This paper proposes a feature selection technique to overcome the performance problems of intrusion detection systems. Focusing on feature selection, the first phase of the proposed system aims at constructing a feature subset using a sequential forward floating search (SFFS) to downsize the dimension of the variables. The second phase constructs a classification model with the selected feature subset using a random forest classifier (RFC) and evaluates the classification accuracy. Experiments were conducted with the NSL-KDD dataset using SFFS-RF, and the results indicated that feature selection techniques are a necessary preprocessing step to improve the overall system performance in systems that handle large datasets. They also verified that SFFS-RF could be used for data classification. In conclusion, SFFS-RF could be the key to improving the classification model performance in machine learning.
본 논문은 문서 분류의 전처리 단계인 특징 선택을 위해 의미를 고려한 최적의 특징 선택 방법을 제안한다. 특징 선택은 불필요한 특징을 제거하고 분류에 필요한 특징을 추출하는 작업으로 분류 작업에서 매우 중요한 역할을 한다. 특징 선택 기법으로 특징의 의미를 파악하여 특징을 선택하는 LSA(Latent Semantic Analysis) 기법을 사용하지만 기본 LSA는 분류 작업에 특성화 된 기법이 아니므로 지도적 학습을 통해 분류에 적합하도록 개선된 지도적 LSA를 사용한다. 지도적 LSA를 통해 선택된 특징들로부터 최적화 기법인 유전 알고리즘을 사용하여 더 최적의 특징들을 추출한다. 마지막으로, 추출한 특징들로 분류할 문서를 표현하고 SVM (Support Vector Machine)을 이용한 특정 분류기를 사용하여 분류를 수행하였다. 지도적 LSA를 통해 의미를 고려하고 유전 알고리즘을 통해 최적의 특징 집합을 찾음으로써 높은 분류 성능과 효율성을 보일 것이라 가정하였다. 인터넷 뉴스 기사를 대상으로 분류 실험을 수행한 결과 적은 수의 특징들로 높은 분류 성능을 확인할 수 있었다.
Attigeri, Girija;Manohara Pai, M.M.;Pai, Radhika M.
Journal of Information Processing Systems
/
제15권6호
/
pp.1306-1325
/
2019
As the world is moving towards digitization, data is generated from various sources at a faster rate. It is getting humungous and is termed as big data. The financial sector is one domain which needs to leverage the big data being generated to identify financial risks, fraudulent activities, and so on. The design of predictive models for such financial big data is imperative for maintaining the health of the country's economics. Financial data has many features such as transaction history, repayment data, purchase data, investment data, and so on. The main problem in predictive algorithm is finding the right subset of representative features from which the predictive model can be constructed for a particular task. This paper proposes a correlation-based method using submodular optimization for selecting the optimum number of features and thereby, reducing the dimensions of the data for faster and better prediction. The important proposition is that the optimal feature subset should contain features having high correlation with the class label, but should not correlate with each other in the subset. Experiments are conducted to understand the effect of the various subsets on different classification algorithms for loan data. The IBM Bluemix BigData platform is used for experimentation along with the Spark notebook. The results indicate that the proposed approach achieves considerable accuracy with optimal subsets in significantly less execution time. The algorithm is also compared with the existing feature selection and extraction algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.