• Title/Summary/Keyword: Feature Maps

Search Result 287, Processing Time 0.032 seconds

Refinement of Disparity Map using the Rule-based Fusion of Area and Feature-based Matching Results

  • Um, Gi-Mun;Ahn, Chung-Hyun;Kim, Kyung-Ok;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.304-309
    • /
    • 1999
  • In this paper, we presents a new disparity map refinement algorithm using statistical characteristics of disparity map and edge information. The proposed algorithm generate a refined disparity map using disparity maps which are obtained from area and feature-based Stereo Matching by selecting a disparity value of edge point based on the statistics of both disparity maps. Experimental results on aerial stereo image show the better results than conventional fusion algorithms in the disparity error. This algorithm can be applied to the reconstruction of building image from the high resolution remote sensing data.

  • PDF

Crack detection based on ResNet with spatial attention

  • Yang, Qiaoning;Jiang, Si;Chen, Juan;Lin, Weiguo
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Deep Convolution neural network (DCNN) has been widely used in the healthy maintenance of civil infrastructure. Using DCNN to improve crack detection performance has attracted many researchers' attention. In this paper, a light-weight spatial attention network module is proposed to strengthen the representation capability of ResNet and improve the crack detection performance. It utilizes attention mechanism to strengthen the interested objects in global receptive field of ResNet convolution layers. Global average spatial information over all channels are used to construct an attention scalar. The scalar is combined with adaptive weighted sigmoid function to activate the output of each channel's feature maps. Salient objects in feature maps are refined by the attention scalar. The proposed spatial attention module is stacked in ResNet50 to detect crack. Experiments results show that the proposed module can got significant performance improvement in crack detection.

Polluted Fish`s Motion Analysis Using Self-Organizing Feature Maps (자기조직화 형상지도를 이용한 오염 물고기 움직임 분석)

  • 강민경;김도현;차의영;곽인실
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.316-318
    • /
    • 2001
  • 본 논문에서는 자기조직화 형상지도(Self-organizing Feature Maps)를 사용하여 움직이는 물체에 대해 움직임의 특성을 자동으로 분석하였다. Kohonen Network는 자기조직을 형성하는 unsupervised learning 알고리즘으로서, 이 논문에서는 생태계에서의 데이터를 Patternizing하고, Clustering 하는데 사용한다. 본 논문에서 Kohonen 신경망의 학습에 사용한 데이터는 CCD 카메라로 물고기의 움직임을 추적한 좌표 데이터이며, diazinon 0.1 ppm을 처리한 물고기 점 데이터와 처리하지 않은 점 데이터를 각각 낮.밤 약 10시간동안 수집하여, \circled1처리전 낮 데이터 \circled2처리전 밤 데이터 \circled3처리전 낮 데이터 \circled4처리후 밤 데이터 각각 4개의 group으로 분류한 후, Kohonen Network을 사용하여 물고기의 행동 차이를 분석하였다.

  • PDF

A Study on Optimal Layout of Two-Dimensional Rectangular Shapes Using Neural Network (신경회로망을 이용한 직사각형의 최적배치에 관한 연구)

  • 한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3063-3072
    • /
    • 1993
  • The layout is an important and difficult problem in industrial applications like sheet metal manufacturing, garment making, circuit layout, plant layout, and land development. The module layout problem is known to be non-deterministic polynomial time complete(NP-complete). To efficiently find an optimal layout from a large number of candidate layout configuration a heuristic algorithm could be used. In recent years, a number of researchers have investigated the combinatorial optimization problems by using neural network principles such as traveling salesman problem, placement and routing in circuit design. This paper describes the application of Self-organizing Feature Maps(SOM) of the Kohonen network and Simulated Annealing Algorithm(SAA) to the layout problem of the two-dimensional rectangular shapes.

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

A Study on the Worm Detection in the IP Packet based on Self-Organizing Feature Maps (Self-Organizing Feature Maps 기반 IP 패킷의 웜 탐지에 관한 연구)

  • 민동옥;손태식;문종섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.346-348
    • /
    • 2004
  • 급증하고 있는 인터넷 환경에서 정보보호는 가장 중요한 고려사항 중 하나이다. 특히, 인터넷의 발달로 빠르게 확산되고 있는 웜 바이러스는 현재 바이러스의 대부분을 차지하며, 다양한 종류의 바이러스들과 악성코드들을 네트워크에 전파시키고 있다 지금 이 순간도 웜 바이러스가 네트워크를 통해 확산되고 있지만, 웜 바이러스의 탐지가 응용레벨에서의 룰-매칭 방식에 근거하고 있기 때문에 신종이나 변종 웜 바이러스에 대해서 탐지가 난해하고, 감염된 이후에 탐지를 할 수밖에 없다는 한계를 가지고 있다. 본 연구에서는 신종이나 변종 웜 바이러스의 탐지가 가능하고, 네트워크 레벨에서 탐지할 수 있는 신경망의 인공지능 모델 중 SOFM을 이용한 웜 바이러스 탐지 방안을 제시한다.

  • PDF

Application of Soft Computing Model for Hydrologic Forecasting

  • Kim, Sung-Won;Park, Ki-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.336-339
    • /
    • 2012
  • Accurate forecasting of pan evaporation (PE) is very important for monitoring, survey, and management of water resources. The purpose of this study is to develop and apply Kohonen self-organizing feature maps neural networks model (KSOFM-NNM) to forecast the daily PE for the dry climate region in south western Iran. KSOFM-NNM for Ahwaz station was used to forecast daily PE on the basis of temperature-based, radiation-based, and sunshine duration-based input combinations. The measurements at Ahwaz station in south western Iran, for the period of January 2002 - December 2008, were used for training, cross-validation and testing data of KSOFM-NNM. The results obtained by TEM 1 produced the best results among other combinations for Ahwaz station. Based on the comparisons, it was found that KSOFM-NNM can be employed successfully for forecasting the daily PE from the limited climatic data in south western Iran.

  • PDF

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.

Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1167-1174
    • /
    • 2006
  • Text region detection from a natural scene is useful in many applications such as vehicle license plate recognition. Therefore, in this paper, we propose a text region extraction method using pattern histogram of character-edge maps. We create 16 kinds of edge maps from the extracted edges and then, we create the 8 kinds of edge maps which compound 16 kinds of edge maps, and have a character feature. We extract a candidate of text regions using the 8 kinds of character-edge maps. The verification about candidate of text region used pattern histogram of character-edge maps and structural features of text region. Experimental results show that the proposed method extracts a text regions composed of complex background, various font sizes and font colors effectively.

  • PDF

Active Sonar Classification Algorithm based on HOG Feature (HOG 특징 기반 능동 소나 식별 기법)

  • Shin, Hyunhak;Park, Jaihyun;Ku, Bonhwa;Seo, Iksu;Kim, Taehwan;Lim, Junseok;Ko, Hanseok;Hong, Wooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.