• 제목/요약/키워드: Feature Functions

검색결과 522건 처리시간 0.023초

사용자 의도에 의한 삼차원 삼각형 메쉬의 기하적 특징 추출 (User-Steered Extraction of Geometric Features for 3D Triangular Meshes)

  • 유관희;하종성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제9권2호
    • /
    • pp.11-18
    • /
    • 2003
  • 본 논문은 2차원 영상에서 커서를 특징 경계로 이동시키는 스내핑(snapping)과 특징 경계를 추출하는 래핑(wrapping)을 3차원 메쉬로 확장하여 메쉬상의 기하적 특징을 사용자가 의도한 대로 추출할 수 있는 기법을 다룬다. 먼저 메쉬상의 나타나는 기하적 특징을 계량화하기 위해 근사 곡률과 움직임 비용함수를 정의한다. 이들 수치 값을 기반으로 기하적 스내핑과 기하적 래핑 알고리즘을 설계한다. 본 논문에서는 제안한 알고리즘을 얼굴 메쉬와 치아 메쉬상에 나타나는 기하적 특징을 추출하기 위해 적용하였다.

  • PDF

Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using Deep Feature applicable to Large-scale Datasets

  • Byun, Sung-Woo;Lee, Seok-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4300-4314
    • /
    • 2019
  • With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.

Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation

  • An, Feng-Ping;He, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5955-5977
    • /
    • 2018
  • Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.

개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동 (Interoperability of OpenGIS Component and Spatial Analysis Component)

  • 민경욱;장인성;이종훈
    • 한국공간정보시스템학회 논문지
    • /
    • 제3권1호
    • /
    • pp.49-62
    • /
    • 2001
  • 공간정보 및 속성정보를 저장 및 관리하여 서비스하는 지리정보시스템은 최근 네트워크 및 분산환경의 기술개발과 더불어 급격히 변화하고 있다. 이러한 지리정보시스템은 컴포넌트 기반 기술로 자리매김하고 있으며 OGC(OpenGIS Consortium)에서는 지리정보시스템의 설계 및 구현에 대한 다양한 사양과 토픽을 제시하고 있다. OGC의 사양을 충족하는 개방형 지리정보시스템은 다양한 컴포넌트들로 구성되어 있으며, 이러한 컴포넌트 기반의 시스템에 추가적인 요소로써 공간분석 컴포넌트를 구현하였다. 지리정보시스템에서 공간분석기능은 중요한 요소 중 하나이며 전체 시스템의 성능적, 기능적 평가 기준이 되기도 한다. OGC에서 제시하는 기본 공간데이터 모델인 Geometry 모델은 기본 기하공간객체를 관리하는 모델이며, 다양한 분석 컴포넌트들의 연동을 위하여 확장이 필요하다. 즉 기본 기하공간데이터 모델뿐 아니라, 기본 위상공간데이터 모델을 제공해야 하며 또한 이러한 기본 위상공간모델을 다양한 분석기능에 맞게끔 확장이 필요하다. 본 논문에서는 개방형 GIS컴포넌트의 전체 아키텍쳐와 이와 연동되는 분석 컴포넌트로써 네트?p 분석, TIN 분석 컴포넌트에 대하여 살펴보고 또한 기본 기하 데이터 모델인 OGC Simple Feature Geometry의 확장과 연등방법에 대하여 논의해 볼 것이다.

  • PDF

내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합 (Integrating Color, Texture and Edge Features for Content-Based Image Retrieval)

  • 마명;박동원
    • 감성과학
    • /
    • 제7권4호
    • /
    • pp.57-65
    • /
    • 2004
  • 본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.

  • PDF

Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식 (Insect Footprint Recognition using Trace Transform and a Fuzzy Method)

  • 신복숙;차의영;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1615-1623
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 찾아 개체를 인식하기 위해서, 개선된 SOM 알고리즘과 ART2 알고리즘을 사용하여 인식의 기본 영역을 추출한다. 또한 Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하고 개체를 판단하는 기법을 제안한다. 제안한 기법에서는 모폴로지 기법을 이용하여 region을 먼저 찾고, 개선된 SOM과 ART2 알고리즘을 이용하여 곤충의 크기와 종류에 관계없이 세그먼트를 추출한다. 그리고 곤충 발자국과 같이 다양한 변형이 존재하는 패턴에 적합한 특징값을 찾기 위해서 Trace 변환을 이용하고, 함수의 조합으로 재구성된 Triple 특징값을 이용하여 곤충별로 고유한 패턴을 찾아 인식 실험을 수행한다. 곤충 발자국에서 명확한 발자국과 그렇지 못한 발자국을 자동으로 결정하는 것이 매우 어렵다. 따라서 이와 같이 불확실한 대상을 제외시키지 않고 가능성의 대상으로 판단하고 분류하기 위해서 퍼지 가중치 평균을 이용하여 인식을 수행한다. 제안한 방법에 의한 곤충 발자국의 영역 추출과 인식 실험을 실시하고 그 결과를 제시하였다.

  • PDF

얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템 (Face classification and analysis based on geometrical feature of face)

  • 정광민;김정훈
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1495-1504
    • /
    • 2012
  • 본 논문에서는 얼굴의 기하학적 특징정보를 기반으로 하여 얼굴의 특징자인 눈썹, 눈, 입, 턱선의 분류 및 해석 알고리즘을 제안하였다. 먼저, 얼굴 특징정보의 분류와 해석을 하기위한 전처리 과정으로 얼굴 특징자들의 눈, 코, 입, 눈썹, 턱선을 추출하기위해 얼굴 특징자 추출 알고리즘을 적용하여 얼굴 특징자들을 추출하게 된다. 추출한 얼굴 특징자들의 형태 정보와 모양정보 및 특징자들 간의 거리비율을 검출하여 이를 평가함수화 하고, 3가지의 눈 타입, 9가지의 입 타입, 12가지의 눈썹 타입 그리고 4가지의 턱선 타입의 분류를 하게 된다. 이렇게 분류된 얼굴 특징자들을 이용하여 얼굴을 해석하게 된다. 얼굴해석 알고리즘은 각각의 특징자들에 대한 고유의 특징자들의 내부구간의 화소분포 정보와 기울기 정보를 가지고 있다. 따라서 특징자들 간의 정보를 이용하여 얼굴을 해석할 수 있었다.

노이즈에 강인한 정면 얼굴 검출을 위한 특성벡터 추출법 (Robust feature vector composition for frontal face detection)

  • 이승익;원철호;임성운;김덕규
    • 전자공학회논문지CI
    • /
    • 제42권6호
    • /
    • pp.75-82
    • /
    • 2005
  • 본 논문에서는 정면 얼굴 검출에 이용되는 특성 벡터의 새로운 추출법을 제안한다. 새로운 특성벡터의 추출은 일차원 Harr 웨이블릿, 평균행렬, 분산행렬 및 진폭 투시법을 이용하여 각 각의 특성벡터를 구하였으며 얼굴 및 비 얼굴의 모델링은 확률적 특성을 이용한 조건부 확률 분포 함수로 모델링 한다. 또한 계산된 확률 분포 함수를 이용한 확률 값을 계산하여 입력 영상에서의 얼굴 검출을 수행한다. 제안한 방법으로 구성된 특성 벡터를 이용한 얼굴 검출에서는, 영상 내에서의 다수의 얼굴 검출이 가능하며 약간의 각도를 가지는 얼굴 검출도 가능하며 저해상도의 영상에서의 얼굴 검출에 매우 효과적이며 모의실험 결과 SET3의 테스트 영상에서의 얼굴 검출율은 $98.3\%$가 됨을 확인하였다.

바이올린 음원을 이용한 스펙트랄 롤오프 포인트의 최적점 검출 (Detection of the Optimum Spectral Roll-off Point using Violin as a Sound Source)

  • 김재천
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.51-56
    • /
    • 2007
  • 음악을 분류하기 위해 특성함수를 사용하여 추출한 특성값 벡터를 사용한다. 본 실험에서는 특성값 벡터를 추출하기 위해 스펙트랄 롤오프, 분산, 평균 피크레벨을 사용하였다. 이중에서 스펙트랄 롤오프는 저음프레임과 고음프레임의 상대적인 비를 나타낸다. 최적의 롤오프 포인트를 찾기 위하여 롤오프 포인트를 0.05에서 0.9까지 0.05간격으로 증가시키며 반복실험 하였다. 롤오프 포인트를 증가시키며 분류성공률을 관찰하였다. 그리고 실험에 사용된 음원데이터는 바로크바이올린과 현대바이올린 연주이다. 두 종류의 악기는 모양과 주파수대역에 있어서 유사하지만 약간의 대역차와 질감의 차이를 가지고 있다. 이러한 특성이 최적의 롤오프 포인트를 찾는데 유용할 것으로 판단하였다. 실험결과 롤오프 포인트 0.85에서 가장 높은 분류성공률 85%를 나타냈다.

  • PDF

A Deep Belief Network for Electricity Utilisation Feature Analysis of Air Conditioners Using a Smart IoT Platform

  • Song, Wei;Feng, Ning;Tian, Yifei;Fong, Simon;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.162-175
    • /
    • 2018
  • Currently, electricity consumption and feedback mechanisms are being widely researched in Internet of Things (IoT) areas to realise power consumption monitoring and management through the remote control of appliances. This paper aims to develop a smart electricity utilisation IoT platform with a deep belief network for electricity utilisation feature modelling. In the end node of electricity utilisation, a smart monitoring and control module is developed for automatically operating air conditioners with a gateway, which connects and controls the appliances through an embedded ZigBee solution. To collect electricity consumption data, a programmable smart IoT gateway is developed to connect an IoT cloud server of smart electricity utilisation via the Internet and report the operational parameters and working states. The cloud platform manages the behaviour planning functions of the energy-saving strategies based on the power consumption features analysed by a deep belief network algorithm, which enables the automatic classification of the electricity utilisation situation. Besides increasing the user's comfort and improving the user's experience, the established feature models provide reliable information and effective control suggestions for power reduction by refining the air conditioner operation habits of each house. In addition, several data visualisation technologies are utilised to present the power consumption datasets intuitively.