• Title/Summary/Keyword: Feature Extraction and Recognition

Search Result 820, Processing Time 0.024 seconds

A Study on the Feature Extraction for High Speed Character Recognition -By Using Interative Extraction and Hierarchical Formation of Directional Information- (고속 문자 인식을 위한 특징량 추출에 관한 연구 - 방향정보의 반복적 추출과 특징량의 계층성을 이용하여 -)

  • 강선미;이기용;양윤모;양윤모;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.102-110
    • /
    • 1992
  • In this paper, a new method of character recognition is proposed. It uses density information, in addition to positional and directional information generally used, to recognize a character. Four directional feature primitives are extracted from the thinning templates on the observation that the output of the templates have directional property in general. A simple and fast feature extraction scheme is possible. Features are organized from recursive nonary tree(N-tree) that corresponds to normalized character area. Each node of the N-tree has four directional features that are sum of the features of it's nine sub-nodes. Every feature primitive from the templates are added to the corresponding leaf and then summed to the upper nodes successively. Recognition can be accomplished by using appropriate feature level of N-tree. Also, effectiveness of each node's feature vector was tested by experiment. A method to implement the proposed feature vector organization algorithm into hardware is proposed as well. The third generation node, which is 4$\times$4, is used as a unit processing element to extract features, and it was implemented in hardware. As a result, we could observe that it is possible to extract feature vector for real-time processing.

  • PDF

Visual Touch Recognition for NUI Using Voronoi-Tessellation Algorithm (보로노이-테셀레이션 알고리즘을 이용한 NUI를 위한 비주얼 터치 인식)

  • Kim, Sung Kwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.465-472
    • /
    • 2015
  • This paper presents a visual touch recognition for NUI(Natural User Interface) using Voronoi-tessellation algorithm. The proposed algorithms are three parts as follows: hand region extraction, hand feature point extraction, visual-touch recognition. To improve the robustness of hand region extraction, we propose RGB/HSI color model, Canny edge detection algorithm, and use of spatial frequency information. In addition, to improve the accuracy of the recognition of hand feature point extraction, we propose the use of Douglas Peucker algorithm, Also, to recognize the visual touch, we propose the use of the Voronoi-tessellation algorithm. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Feature Parameter Extraction and Speech Recognition Using Matrix Factorization (Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식)

  • Lee Kwang-Seok;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1307-1311
    • /
    • 2006
  • In this paper, we propose new speech feature parameter using the Matrix Factorization for appearance part-based features of speech spectrum. The proposed parameter represents effective dimensional reduced data from multi-dimensional feature data through matrix factorization procedure under all of the matrix elements are the non-negative constraint. Reduced feature data presents p art-based features of input data. We verify about usefulness of NMF(Non-Negative Matrix Factorization) algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment results, we confirm that proposed feature parameter is superior to MFCC(Mel-Frequency Cepstral Coefficient) in recognition performance that is used generally.

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

A Study on On-line Recognition System of Korean Characters (온라인 한글자소 인식시스템의 구성에 관한 연구)

  • Choi, Seok;Kim, Gil-Jung;Huh, Man-Tak;Lee, Jong-Hyeok;Nam, Ki-Gon;Yoon, Tae-Hoon;Kim, Jae-Chang;Lee, Ryang-Seong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.94-105
    • /
    • 1993
  • In this paper propose a Koaren character recognition system using a neural network is proposed. This system is a multilayer neural network based on the masking field model which consists of a input layer, four feature extraction layers which extracts type, direction, stroke, and connection features, and an output layer which gives us recognized character codes. First, 4x4 subpatterns of an NxN character pattern stored in the input buffer are applied into the feature extraction layers sequentially. Then, each of feature extraction layers extracts sequentially features such as type, direction, stroke, and connection, respectively. Type features for direction and connection are extracted by the type feature extraction layer, direction features for stroke by the direction feature extraction layer and stroke and connection features for stroke by the direction feature extraction layer and stroke and connection features for the recongnition of character by the stroke and the connection feature extractions layers, respectively. The stroke and connection features are saved in the sequential buffer layer sequentially and using these features the characters are recognized in the output layer. The recognition results of this system by tests with 8 single consonants and 6 single vowels are promising.

  • PDF

Feature extraction for part recognition system of FMC (FMC의 부품인식을 위한 형상 정보 추출에 관한 연구)

  • 김의석;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.892-895
    • /
    • 1992
  • This paper presents a methodology for automatic feature extraction used in a vision system of FMC (flexible Manufacturing Cell). To implement a robot vision system, it is important to make a feature database for object recognition, location, and orientation. For industrial applications, it is necessary to extract feature information from CAD database since the detail information about an object is described in CAD data. Generally, CAD description is three dimensional information but single image data from camera is two dimensional information. Because of this dimensiional difference, many problems arise. Our primary concern in this study is to convert three dimensional data into two dimensional data and to extract some features from them and store them into the feature database. Secondary concern is to construct feature selecting system that can be used for part recognition in a given set of objects.

  • PDF

A Comparison of Effective Feature Vectors for Speech Emotion Recognition (음성신호기반의 감정인식의 특징 벡터 비교)

  • Shin, Bo-Ra;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1364-1369
    • /
    • 2018
  • Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.

Untact Face Recognition System Based on Super-resolution in Low-Resolution Images (초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템)

  • Bae, Hyeon Bin;Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks (하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식)

  • Lew, Sheen;Jeong, Byeong-Jun;Kang, Hyun-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1016-1023
    • /
    • 2009
  • A license plate recognition system consists of image processing in which characters and features are extracted, and pattern recognition in which extracted characters are classified. Feature extraction plays an important role in not only the level of data reduction but also performance of recognition. Thus, in this paper, we focused on the recognition of numeral characters especially on the feature extraction of numeral characters which has much effect in the result of plate recognition. We suggest a hybrid statistical feature model which assures the best dispersion of input data by reassignment of clustering property of input data. And we verify the effectiveness of suggested model using multi-layer perceptron and learning vector quantization neural networks. The results show that the proposed feature extraction method preserves the information of a license plate well and also is robust and effective for even noisy and external environment.

Ultrasonic Signal Analysis with DSP for the Pattern Recognition of Welding Flaws

  • Kim, Jae-Yeol;Cho, Gyu-Jae;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 2000
  • The researches classifying the artificial flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including user defined function is developed and the total procedure is made up the digital signal processing, feature extraction, feature selection, classfier design. Specially it is composed with and discussed using the ststistical classfier such as the linear discriminant function classfier, the empirical Bayesian classfier.

  • PDF