• Title/Summary/Keyword: Feature Extraction and Matching

검색결과 232건 처리시간 0.023초

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.

복잡한 환경에서 Grid기반 모폴리지와 방향성 에지 연결을 이용한 차선 검출 기법 (Lane Detection in Complex Environment Using Grid-Based Morphology and Directional Edge-link Pairs)

  • 림청;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.786-792
    • /
    • 2010
  • 본 논문은 복잡한 도로 환경에서 차선을 정확하게 찾는 실시간 차선 검출법을 보인다. 기존의 많은 방법들은 대게 후처리 과정에서 차선 안쪽에 존재하는 잡음을 찾아 차선의 위치를 찾지만, 제안하는 방법은 특징 추출 단계에서 가능한 많은 잡음을 제거하므로 후처리 과정에서 검색 영역을 최소화한다. grid기반 모폴로지 연산은 우선 관심영역을 능동적으로 생성한 후, 모폴로지의 닫기 연산을 통해 에지 들을 연결한다. 그리고 방향성 에지 연결 기법을 통하여 유효한 방향에지를 찾고 사전에 구해진 영상 내 차선의 높이와 두 차선 간의 폭 관계를 이용하여 두 개의 차선을 군집화한다. 마지막으로 차선의 색상은 YUV색상 공간에서 두 개의 연결된 에지 안쪽을 검사하여 Bayesian확률 모델을 사용하여 추정한다. 제안하는 방법의 실험 결과는 다수의 불필요한 에지 군집이 존재하는 복잡한 도로 환경에서 효과적으로 도로 에지를 감별하였으며, 제안하는 알고리즘은 해상도 $320{\times}240$ 영상으로 10ms/frame의 속도에서 약92%의 정확도를 보였다.