• 제목/요약/키워드: Feature Anile

검색결과 1건 처리시간 0.016초

가상 데이터와 융합 분류기에 기반한 얼굴인식 (Face Recognition based on Hybrid Classifiers with Virtual Samples)

  • 류연식;오세영
    • 전자공학회논문지CI
    • /
    • 제40권1호
    • /
    • pp.19-29
    • /
    • 2003
  • 본 논문은 인위적으로 생성된 가상 학습 데이터와 융합 분류기를 이용한 얼굴인식 알고리즘을 제안한다. 특징공간에서의 최근접 특징 선택 방법과 연결주의 모델에 기반한 서로 다른 형태의 분류기를 융합하여 통합효과를 얻도록 하였다. 두 분류기는 모두 학습 데이터의 공간적인 분포에 따라 생성된 가상 학습데이터를 이용하여 학습되고 이용된다. 첫째로, 특징 공간에서의 각 정보(Angular Infnrmation) 를 이용하는 최근접특징각(the Nearest Feature Angle : NFA)을 이용하여 저장된 학습데이터와 가장 근접한 것을 찾고, 둘째로, 질의(Query) 얼굴 특징 정보를 정면얼굴 영상의 특징정보로 투영하여 얻은 정보에 기반한 분류기의 결과를 이용한다. 정면영상 특징정보로의 투영은 다층 신경망을 이용하여 정면 회상망(Frontal Recall Network)을 구현하였고, 이것을 여러 개 묶어 앙상블 네트웍으로 구성한 Ensemble 회상망(Ensemble Recall Network)을 사용하여 일반화 성능을 향상시켰다. 끝으로, 각 분류기의 결과에 따라 융합 분류기가 최종 결과를 선택하도록 하였다. 제안된 알고리즘을 6 종류의 서고 다른 학습/시험데이터 군에 적용하여 평균 96.33%의 인식률을 얻었다. 이것은 특징라인에 기반한 방법(the Nearest Feature Line) 평균 에러율의 61.2% 이며, 단일 분류기를 사용한 경우 보다 안정된 견과를 얻고 있다.