• Title/Summary/Keyword: Fear conditioning

Search Result 23, Processing Time 0.019 seconds

Phenotypic Characterization of MPS IIIA (Sgshmps3a/ Sgshmps3a) Mouse Model

  • Park, Sung Won;Ko, Ara;Jin, Dong-kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and CNS degeneration. Characterization of animal model is the beginning point of the therapeutic clinical trial. Mouse model has a limitation in that it is not a human and does not have all of the disease phenotypes. Therefore, delineate of the phenotypic characteristics of MPS IIIA mouse model prerequisite for the enzyme replace treatment for the diseases. We designed 6-month duration of phenotypic characterization of MPS IIIA mouse biochemically, behaviorally and histologically. We compared height and weight of MPS IIIA mouse with wild type from 4 weeks to 6 months in both male and female. At 6 months, we measured GAG storage in urine kidney, heart, liver, lung and spleen. The brain GAG storage is presented with Alcian blue staining, immunohistochemistry, and electron-microscopy. The neurologic phenotype is evaluated by brain MRI and behavioral study including open field test, fear conditioning, T-maze test and Y-maze test. Especially behavioral tests were done serially at 4month and 6month. This study will show the result of the MPS IIIA mouse model phenotypic characterization. The MPS IIIA mouse provides an excellent model for evaluating pathogenic mechanisms of disease and for testing treatment strategies, including enzyme or cell replacement and gene therapy.

Assessment of the effects of virus-mediated limited Oct4 overexpression on the structure of the hippocampus and behavior in mice

  • Sim, Su-Eon;Park, Soo-Won;Choi, Sun-Lim;Yu, Nam-Kyung;Ko, Hyoung-Gon;Jang, Deok-Jin;Lee, Kyung-Min;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.793-798
    • /
    • 2011
  • Recently, pluripotency induction or cellular reprogramming by introducing critical transcription factors has been extensively studied, but has been demonstrated only in vitro. Based on reports that Oct4 is critically involved in transforming neural stem cells into pluripotent cells, we used the lentiviral vector to introduce the Oct4 gene into the hippocampal dentate gyrus (DG) of adult mice. We examined whether this manipulation led to cellular or behavioral changes, possibly through processes involving the transformation of NS cells into pluripotent cells. The Oct4 lentivirus-infused group and the green fluorescent protein lentivirus-infused group showed a similar thickness of the DG and a comparable level of synaptophysin expression in the DG. Furthermore, our behavioral analyses did not show any differences between the groups concerning exploratory activity, anxiety, or memory abilities. This first trial for pluripotency induction in vivo, despite negative results, provides implications and information for future studies on in vivo cellular reprogramming.

Memory Enhancing Effect of Longanae Arillus against Scopolamine-induced Amnesia in C57BL/6 Mice (스코폴라민으로 유도한 기억 손상 모델에서 용안육(龍眼肉)의 보호 효과 연구)

  • Jung, Tae-Young;Lee, Heui-Woong;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.406-416
    • /
    • 2011
  • In this study, we have verified the memory and cognitive enhancing effect of Longanae Arillus, the fruit of Euphoria longana Lamarck, which has been used as a tonic and for the treatment of amnesia, insomnia, and palpitations in oriental medicine. To investigate the effect of Longanae Arillus water extract(LAE) on the memory and cognitive dysfunction, scopolamine (1 mg/kg, i.p.) was injected in C57BL/6 mice and several behavior tests including Y-maze, Morris water-maze, passive avoidance and fear conditioning tests were conducted. Administration of LAE (100 or 200 mg/kg/day, p.o.) effectively improved scopolamine-induced memory impairment and dysfunction. To further determine the possible molecule mechanism of LAE, we have examined the activity and/or mRNA expression of diverse proteins involved in the acetylcholine metabolism. LAE particularly increased the amount of acetylcholine in the cortex which was mediated by suppression of acetylcholine esterase (AchE) activity. In addition, LAE elevated the mRNA expression of muscarinic acetylcholine receptors (mAchRs) without affecting the mRNA levels of choline acetyltransferase (ChAT) and acetylcholine esterase (AchE). In another experiment, LAE effectively inhibited mRNA expression of pro-inflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-$1{\beta}$ (IL1-${\beta}$), which seemed to be mediated by inhibition of upstream transcription factor NF-${\kappa}B$ and extracellular-regulated kinase 1/2 (ERK1/2). These results demonstrate that Longanae Arillus can increase acetylcholine amount the cortex via regulation of AchE activity as well as mAchRs expression and decrease pro-inflammatory responses via inhibition of NF-${\kappa}B$ signaling pathway, thereby having therapeutic potential to improve memory and cognitive deficit in amnesia.