• Title/Summary/Keyword: FeSiB films

Search Result 53, Processing Time 0.024 seconds

Improvement of Sensitivity in Micro Magnetoelastic Strain Sensors (마이크로 자기탄성스트레인센서의 고감토화)

  • Shin, K.H.;Hur, J.;Choi, H.I.;Kim, Y.H.;Sa-Gong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.423-426
    • /
    • 2001
  • Recently we have reported that the meander-patterned amorphous FeCoSiB films exhibit large change in their high frequency impedance by applying a strain, suggesting that the films are very attractive for making of a highly sensitive strain sensor elements. In this study, the effect of anisotropy on a change in the impedance of sputtered amorphous film patterns was investigated in the frequency range from 1MHz to 1GHz. As a function of applied strains, the high frequency impedance was extremely changed in the case of film patterns with transverse anisotropy due to excellent magnetomechanical coupling properties. As a summary, the maximum figure of merit f has measured about 2600 in the case of transverse anisotropy, and about 500 in the case of longitudinal anisotropy at 500 MHz. These values of F are approximately more than 1000 times higher than that of a conventional metal strain gauge (F 2) and more than 10 times higher than that of a semiconductor gauge (F 200).

  • PDF

Temperature dependence of permeability and magnetoimpedance effect in $Co_{70}Fe_5Si_{15}Nb_{2.2}Cu_{0.8}B_7$ ribbons

  • Phan, Manh-Huong;Kim, Yong-Seok;Quang, Pham-Hong;Yu, Seong-Cho;Nguyen Chau;Chien, Nguyen-Xuan
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.88-89
    • /
    • 2003
  • During the past decade, giant magnetotransport phenomena such as giant magetoresistance (GMR) in thin films and in manganese perovskites, and, giant magnetoimpedance (GMI) in soft magnetic amorphous ribbons, have brought much interest in the basic physical understanding and their applications as magnetic recording heads and in magnetic sensors technology. Among the parameters required for the quality of a magnetic sensor, temperature dependences of GMR and GMI profiles are playing an important role. In the present work, we have studied temperature dependences of the longitudinal permeability and giant magnetoimpedance effect in $Co_{70}$F $e_{5}$S $i_{15}$ N $b_{2.2}$C $u_{0.8}$ $B_{7}$ amorphous ribbons expecting as a promising candidate in the domain of magnetic sensors.rs.rs.rs.s.

  • PDF

Study on the Spin Valve Giant Magnetoresistance With a New Mn-Ir-Pt Antife rromagnetic Material (Mn-Ir-Pt 새로운 반강자성체를 사용한 스핀밸브 거대자기저항에 관한 연구)

  • 서수정;윤성용;김장현;전동민;김윤식;이두현
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.141-145
    • /
    • 2001
  • The Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ exchange bias layers (EBLs), which have a small amounts of Pt, exhibit a high value of H$\_$ex/. The Si/Ni-Fe/Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ EBL shows the largest H$\_$ex/ of 187 Oe, which is equivalent to a exchange energy (J$\_$ex/) of 0.146 erg/cm$^2$. Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ EBLS are estimated to have blocking temperature of about 250 $\^{C}$, which is higher than those of Mn-Ir EBLs and Mn-Ir-Pt EBLs with higher Pt contents. This result implies that a little addition of Pt element promotes thermal stability in the Mn-Ir-Pt EBLs. The chemical stability of Mn-Ir-Pt EBLs was characterized by potentiodynamic test, which was performed in 0.001 M NaCl solution. The current density of Mn-Ir-Pt films was gradually reduced with increasing Pt content. The present results indicate that the Mn-Ir-Pt with a small amount of Pt is suitable for an antiferromagnetic material for a reliable spin valve giant magnetoresistance device.

  • PDF