• Title/Summary/Keyword: FePtSn thin film

Search Result 4, Processing Time 0.019 seconds

Improvement of Magnetic Properties and Texture of FePt Thin Films on MgO Substrates by Sn Addition

  • Chun, Dong-Won;Kim, Sung-Man;Kim, Gyeung-Ho;Jeung, Won-Young
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.7-10
    • /
    • 2009
  • In this work, we studied the effects of Sn addition on the ordering temperature of FePt thin film. The coercivity of FePtSn film was about 1000 Oe greater than the coercivity of FePt film for an annealing temperature of $600^{\circ}C$. Therefore, Sn addition was effective in promoting the $L1_0$ ordering and in reducing the ordering temperature of the FePt film. From our X-ray diffraction results, we found that in the as-deposited film, the addition of Sn induced a lattice expansion in disordered FePt thin films. After the annealing process, the excess Sn diffuses out from the ordered FePt thin film because of the difference in the solid solubility of Sn between the disordered and ordered phases. The existence of precipitates of Sn from the FePt lattice was deduced by Curie temperature measurements of the FePt and FePtSn films. Therefore, the key role played by the addition of Sn to the FePt film can be explained by a reduction in the activation energy for the $L1_0$ order-disorder transformation of FePt which originates from the high internal stress in the disordered phase induced by the supersaturated Sn atoms.

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.