• 제목/요약/키워드: Fe-based powder

검색결과 231건 처리시간 0.023초

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

L-PBF 공정으로 제조된 Nd-Fe-B계 영구자석의 기판 가열에 따른 미세조직과 자기적 특성 변화 (Effect of Substrate Pre-heating on Microstructure and Magnetic Properties of Nd-Fe-B Permanent Magnet Manufactured by L-PBF)

  • 김연우;박하음;김태훈;김경태;유지훈;최윤석;박정민
    • 한국분말재료학회지
    • /
    • 제30권2호
    • /
    • pp.116-122
    • /
    • 2023
  • Because magnets fabricated using Nd-Fe-B exhibit excellent magnetic properties, this novel material is used in various high-tech industries. However, because of the brittleness and low formability of Nd-Fe-B magnets, the design freedom of shapes for improving the performance is limited based on conventional tooling and postprocessing. Laser-powder bed fusion (L-PBF), the most famous additive manufacturing (AM) technique, has recently emerged as a novel process for producing geometrically complex shapes of Nd-Fe-B parts owing to its high precision and good spatial resolution. However, because of the repeated thermal shock applied to the materials during L-PBF, it is difficult to fabricate a dense Nd-Fe-B magnet. In this study, a high-density (>96%) Nd-Fe-B magnet is successfully fabricated by minimizing the thermal residual stress caused by substrate heating during L-PBF.

철계 연자성 분말용 하이브리드 절연 코팅막 개발 (Development of Hybrid Insulating Coating for Fe-based Soft Magnetic Powder)

  • 김정준;김선겸;김영균;장태석;김휘준;김용진;최현주
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.233-238
    • /
    • 2021
  • Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of high-frequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.

Al-Fe 레이저 오버레이층 경계면에서의 금속간화합물 거동 (Intermetallic Compounds Behavior at Laser Overlay Interface of Aluminum and Fe-based Powder)

  • 강남현;유연곤;이창우;김정한
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.51-56
    • /
    • 2007
  • A $CO_2$ laser overlay was conducted by using a Fe-based powder on the AC2B aluminum substrate. Cracks and intermetallic compounds (IMC) were observed inconsistently along the interface between the overlay and post-molten layer. A scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) detected some Fe-rich IMC ($Fe_3Al$, FeAl) as well as the brittle Al-rich IMC ($Fe_2Al_5,\;FeAl_3$). Micro vickers hardness proved the formation of Al-rich IMC ($FeAl_3$) along the interface by showing HV0.1 $800{\sim}900$. Furthermore, nano indentation was successfully applied to investigate the behavior of IMC more precisely than the micro vickers hardness.

철계 복합 분말로 제조된 오버레이 용접층의 미세조직 및 특성 (Microstructure and Characterization of Overlay Welding Layer using Fe-based Composite Powders)

  • 민홍;이종재;이진규
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.214-219
    • /
    • 2019
  • In this study, the microstructure and characterization of an overlay welding layer using Fe-based composite powders are reported. The effects of the number of passes and composition of powders on the microstructure and mechanical properties are investigated in detail. The welding wire and powders are deposited twice on a stainless-steel rod using a laser overlay welding process. The microstructure and structural characterization are performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the first and second overlay layers are analyzed through the micro-Vickers-hardness tester and abrasion wear tester. In the second overlay layer, the hardness and specific wear are approximately 840 Hv and $2.0{\times}10^{-5}mm^3/Nm$, respectively. It is suggested that the increase of the volume fractions of $(Cr,Fe)_7C_3$ and NbC phases in the second welding layer enhances the hardness and wear resistance.

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 1. 합금 wire의 직경 및 인가 전압의 영향 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.105-111
    • /
    • 2011
  • This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

Steric Stabilization에 의한 석유분산매 자성유체의 제조 (Preparation of Kerosine-Based Magnetic Ferrofluid by Steric Stabilizaton)

  • 신학기;장현명;김태옥
    • 한국세라믹학회지
    • /
    • 제27권5호
    • /
    • pp.684-692
    • /
    • 1990
  • Ultrafine magnetite powder for the ferromagnetic fluid was prepared by an addition of alkaline solution to the solution containing Fe2+ and Fe3+ ions at 6$0^{\circ}C$. The optimum condition of the magnetite synthesis was delineated by examining such various physico-chemical properties as Fe2+/Fe+3 ratio in the powder, phase characteristics, MHC and $\sigma$max. A new scheme for the steric stabilization of colloidal dispersion was proposed using the concept of the buffer group action for the increased interfacial density of the stabilizing moieties at colloid particle/dispersion medium interface. The proposed concept was successfully applied to the preparation of the kinetically stable kerosinebased ferrofluid using Tween and Span as dispersants. In the dispersion of magnetite particles in a kerosine, Tween(polyoxyethylene sorbitan oleate) acts as a primary stabilizer which provides an anchor group, whereas Span(sorbitan oleate) can be classified as a secondary stabilizer which adsorbs on the surface of magnetite particle through the action of the buffer group. Dispersion studies using various quantities of Tween and Span supported the concept of the buffer group action for increased dispersion characteristics of the kerosine based ferromagnetic fluid.

  • PDF