• 제목/요약/키워드: Fe-Si Alloy

검색결과 412건 처리시간 0.024초

고강도, 고연성 Al-Mg계 알루미늄 개발 합금의 내식성 특성 (Corrosion of High Strength and High Ductility Al-Mg Develpment Aluminum Alloy)

  • 최인규;김시명;김상호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.155-156
    • /
    • 2015
  • 최근 자동차 및 항공기의 경량화 관련하여 알루미늄 합금의 필요성이 높아지고 있으나, 자동차재료에 쓰이는 알리미늄 합금의 경우 높은 이온화 경향 때문에 Fe, Cu, Pb 등과 접촉하면 쉽게 부식되는 단점이 있다. 본 연구에서는 기존의 Magsimal-59 샘플과 본 연구에서 개발한 고용질, 저용질 Duplex 알루미늄 합금과의 내식성을 분극 및 갈바닉을 통해 확인하고, 균질화처리를 통해 내식성을 개선한다.

  • PDF

DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구 (Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW)

  • 하려선;정병호;박화순
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

Ultra-fine Grained Aluminum Alloy Sheets fabricated by Roll Bonding Process

  • 김형욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity.

  • PDF

가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향 (Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation)

  • 한현성;강창룡
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.160-166
    • /
    • 2019
  • This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구 (A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method)

  • 곽현만;최창옥
    • 한국주조공학회지
    • /
    • 제13권3호
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF

Al-Si-Mg계 합금의 열처리에 의한 미세조직과 경도 변화 (A Study on the Microstructure and Hardness of Al-Si-Mg Alloys upon Heat Treatments)

  • 이세종;이성관;백남익
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.108-114
    • /
    • 2000
  • The effects of heat treatments in Al-Si-Mg alloys on the microstructure and hardness have been investigated by the optical microscope, scanning electron microscope(SEM), and Rockwell hardness tester. The materials of various compositions are melted in a vacuum induction furnace under argon atmosphere. Five different Al alloys are prepared from commercial purity aluminium, magnesium and Al-25Si alloy. Two types of aging treatments are performed: i) Isothermal aging of the specimens at $150^{\circ}C$, $170^{\circ}C$ and $190^{\circ}C$. ii) Pre-aging of the specimens at $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, and followed by final-aging at $170^{\circ}C$ and $190^{\circ}C$. After the heat treatments, Rockwell hardness are measured with all the specimens.

  • PDF

도재소부용 Ni-Cr 보철합금 개발에 관한 연구 (A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy)

  • 이규환;신명철;최부병
    • 대한의용생체공학회:의공학회지
    • /
    • 제6권1호
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / $Al_2O_3$단섬유강화복합재료의 특성 (Characteristics of $Al_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion)

  • 이학주;홍준표
    • 한국주조공학회지
    • /
    • 제11권4호
    • /
    • pp.293-302
    • /
    • 1991
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by a combined technique of rheo-compocasting and hot extrusion. Distribution of fibers in the composites fabricated by rheo-compocasting was relatively uniform. A good degree of uniaxial fiber alignment has been achieved by hot extrusion, but a lot of fibers fractured during extrusion. The tendency of fiber fracturing increases as the aspect ratio and the amount of fibers increase. Relatively good bonding between fiber and matrix was obtained by the formation of $MgAl_2O_4$ and Mg(Al, Fe)$_2O_4$ at the interface between fiber and matrix. In extruded composites, fiber-strengthening effect was relatively small since a lot of fibers fractured during hot extrusion. On the other hand, dispersion strengthening effect may increase. In order to improve the fiber strengthening effect, it is important to optimize the extrusion condition with consideration of metal flow in extrusion die.

  • PDF

Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장 (Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal)

  • 류재은;이철진;이태재;손경희;신동혁
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권8호
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

연자성 나노결정합금 분말의 열처리 온도에 의한 전자파 흡수 특성의 영향 (Effect of Annealing Temperature on the Electromagnetic Wave Absorbing Properties of Nanocrystalline Soft-magnetic Alloy Powder)

  • 홍순호;손근용;박원욱;문병기;송용설
    • 한국분말재료학회지
    • /
    • 제15권1호
    • /
    • pp.18-22
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy powder. With increasing the annealing temperature the complex permeability (${\mu}_r$), permittivity (${\varepsilon}_r$) and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at $610^{\circ}C$ for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.