• Title/Summary/Keyword: Fe-Ni alloys

Search Result 213, Processing Time 0.028 seconds

A Study on the Magnetic Properties of Melt-Spun (Fe, T)-Nd-C Alloys (TAl, Ti, Co, Ni)

  • Jang, T.S.;Cho, D.H.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.116-119
    • /
    • 1998
  • Influence of small additions ($\leq$2.0 at.%) of Al, Ti, Co, and Ni on the microstructural development and the magnetic properties of melt-spun Fe-Bd-C alloys was investigated. Addition of these elements tended to stabilize the crystallization of as-spun ribbons. Especially, Al and Ti preferred to stabilize$ Fe_{17}Nd_2C_x.$ The average grain size of Fe17Nd2Cx (0.1~0.3 ${\mu}{\textrm}{m}$), obtained by a proper annealing, in the ribbon treated with 0.5 at.% additive was much smaller than that of additive-free ribbons, which would be the major source of large increase in coercivity. Among the additives, Ni was very effective to increase the coercivity whereas Co had beneficial effect on $T_c.$ By adding 0.5 at.% Ni, intrinsic coercivities of more than 1.4 T, 40~50% higher than that (~1.0T) of additive-free ribbons, can be obtained after annealing at 750~80$0^{\circ}C$.

  • PDF

Microstructures of W-Mo-Ni-Fe Heavy Alloys

  • Lin, Kuan-Hong;Hsu, Chen-Siang;Lin, Shun-Tian
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.937-938
    • /
    • 2006
  • Tungsten heavy alloys with different ratios of Mo and Ni-Fe matrix were liquid-phase-sintered to investigate their microstructural evolution. Results indicated that increased Mo in the alloy promoted the formation of a (W,Mo)(Ni,Fe) type intermetallic compound in the furnace-cooled condition. It was a monoeutectic reaction when the added Mo content was higher than 49at.%, or a eutectic reaction when this value was between 37at,% to 49at.%. When Mo was added between 25at.% to 37at.%, the precipitation of the intermetallic compound took place by either a eutectoid or peritectoid reaction.

  • PDF

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

Study of Mg2Ni1-xFex Alloys by Mössbauer Resonance (Mössbauer 공명에 의한 Mg2Ni1-xFex 합금의 연구)

  • Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • After preparing $Mg_2Ni_{1-x}{^{57}}Fe_x$(x=0.015, 0.03, 0.06, 0.12 and 0.24) alloys, they were studied by $M{\ddot{o}}ssbauer$ resonance. The $M{\ddot{o}}ssbauer$ spectra of x=0.015 and 0.03 alloys exhibit two doublets (doublet 1, 2). That of x=0.06 alloys shows two doublets (doublet 1,2) and one six-line, and those of x=0.12 and 0.24 alloys have only one six-line. The doublet 1 for x=0.015, 0.03 and 0.06 alloys is considered to result from a fraction of Fe in excess showing a superparamagnetic behavior. The doublet 2 is considered to result from the Fe substituted for Ni in the $Mg_2Ni$ phase. The values of isomer shift 0.24 ~ 0.28 mm/s suggest that the iron exist in the state $Fe^{+3}$. The result that the quadrapole splitting of the doublet 2 is not zero shows that the distribution of electrons around the iron is asymmetric. Their values for the doublet 2, 1.20 ~ 1.38 mm/s, approach the value of quadrapole for the oxidation number +3. The six-line showing the magnetic hyperfine interactions results from the iron which has not substituted the nickel in the $Mg_2Ni$ phase. The $M{\ddot{o}}ssbauer$ spectra of the hydrided alloys with x=0.015 and 0.03 show six-line. This suggests that the iron segregates with the hydriding reaction. The analysis results of the $M{\ddot{o}}ssbauer$ spectrum, the variation of magnetization with magnetic field, Auger electron spectroscopy and electron diffraction show the segregation of Ni and the formation of MgO. This is considered to result from the reaction of the $Mg_2Ni$ phase with the oxygen contained in the hydrogen as impurity.

  • PDF

Corrosion Behavior of Ni 200 and Ni-base Alloys in Hot Lithium Molten salt (고온 리튬용융염에서 Ni 200 및 Ni-base 합금의 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Yun Ki-Seok;Park Seung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.251-259
    • /
    • 2004
  • In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. Corrosion behavior of Ni 200 and Ni-base alloys in molten salt of LiCl-$Li_2$O under oxidation atmosphere was investigated in the temperature range of $650~800^{\circ}C$ for 24~312 hrs. The order of corrosion rate was Ni 200 > Inconel 690 > Inconel 601 > Inconel 600. Inconel 600 alloy showed the highest corrosion resistance among the examined alloys, but Ni 200 exhibited the highest corrosion rate. Corrosion products of Inconel 600 and Inconel 601 were $Cr_2$$O_3$ and $NiFe_2$$O_4$. In case of Inconel 690, a single layer of $CrO_2$$O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2$O$_4$ and inner layer of $Cr_2$$O_3$ were formed with increase of corrosion time. Inconel 600 showed local corrosion behavior and Inconel 601, 690 showed uniform corrosion behavior.