• Title/Summary/Keyword: Fe-Cr-Mo

Search Result 216, Processing Time 0.021 seconds

Fractured Surface Morphology and Mechanical Properties of Ni-Cr Based Alloys with Mo Content for Dental Applications

  • Kim, Hyun-Soo;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.260-264
    • /
    • 2016
  • In this study, fractured surface morphology and mechanical properties of Ni-Cr-Mo alloys with various contents of Mo for dental material use have been evaluated by mechanical test. The alloys used were Ni-13Cr-xMo alloys with Mo contents of 4, 6, 8, and 10 wt.%, prepared by using a vacuum arc-melting furnace. Ni-13Cr-xMo alloys were used for mechanical test without heat treatment. The phase and microstructure of alloys using an X-ray diffraction (XRD) and optical microscopy (OM) were evaluated. To examine the mechanical properties of alloys according to microstructure changes, the tensile test and the hardness test were carried out using tensile tester. To understand the mechanism of Mo addition to Ni-Cr alloy on mechanical property, the morphology and fractured surfaces of alloys were investigated by field-emission scanning electron microscope (FE-SEM). As a result, 79Ni-13Cr-8Mo alloy was verified that the tensile strength and the hardness were better than others. Varying Mo content, the changes of microstructures of alloys were identified by OM and SEM and that of 79Ni-13Cr-8Mo alloy was proved fabricated well. Microstructures of alloys were changed depending on Mo content ratio. It has been observed that 8% alloy had the most suitable mechanical property for dental alloy.

Effects of Heat-Treatments on Transformation Behavior of Matrix Structures in High Alloyed White Cast Iron (고합급백주철에 있어서 열처리가 기지조직의 변태에 미치는 영향)

  • Shin, Sang-Woo;Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.409-414
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their transformation behavior of matrix structures in heat-treated conditions. The specimens were produced using a 15kg-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No. 1), 3%C-10%V-5%Mo-5%W(alloy No. 2) and 3%C-17%Cr-3%V(alloy No. 3). The heat-treatments were conducted as follows: frist of all, as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. The observation of morphology of the matrix structures was carried out in the states of as-cast(AS), air-hardened(AHF) and tempered(AHFT). The matrix structures of each alloy were almost fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and retained austenite by the heat-treatments such as air-hardening and tempering.

  • PDF

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

Evaluation of Particle Erosion Resistance for the Boronized Cr/Mo alloy (Boride 코팅의 내입자침식성평가)

  • 이의열;김종하
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.371-376
    • /
    • 2002
  • Steam turbine components of power generators are subjected to severe damages from the particle erosion by iron oxides (mainly $Fe_3$$O_4$) which are formed due to the oxidation of boiler tubes, causing high costs for maintaining and repairing. One of the practical ways to minimize the particle erosion is to apply the erosion resistant boride coating on the turbine components which is composed of boride apply. But the evaluation of its performance has not been carried out. A particle erosion tester, which can offer the erosion condition of steam turbine components, was developed to evaluate the performances of the boronized Cr/Mo alloy. The result showed that the boronized Cr/Mo alloy showed superior resistance to particle erosion to the bare Cr/Mo alloy in all test conditions.

A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel (이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구)

  • 오세욱;윤한기;문인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF

Mechanical Properties of Fe-P-(Mo,Mn) Sintered Alloy Related with Si Contents (Fe-P-(Mo,Mn)계 소결분말 합금에서 Si 첨가에 따른 기계적 특성 변화에 대한 연구)

  • Jung, Woo-Young;Park, Dong-Kyu;Ko, Byung-Hyun;Park, Jin-Woo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.397-401
    • /
    • 2016
  • A lean alloy is defined as a low alloy steel with a minimum amount of the alloying element that maintains the characteristics of the sintered alloy. It is well known that the addition of elements such as Cr, P, Si, or Mn improves the mechanical characteristics of the alloy, but decreases the sinterability. The mother alloy is used to avoid an oxidation reaction with the alloying elements of Cr, P, Si or Mn. The purpose of this study is to determine the change in the mechanical properties of Fe-P-Mo and Fe-P-Mn alloys as a result of the addition of Si. In this article, the Fe-P-Mo and Fe-P-Mn alloys to which Si is added are compacted at $7.0g/cm^3$ and then sintered in $H_2-N_2$ at $1120^{\circ}C$. The P around the macropores and large grains reduces due to the formation of $SiO_2$ as the Si content increases. This is caused by the increase in strength owing to reducing intergranular fracture by suppressing the reaction with oxygen.

Heavy Metal Concentration of Soils and Plants in Baekdong Serpentinite Area, Chungnam - A Case of Pinus densiflora and Pinus rigida - (충남 백동 사문암지역의 토양 및 식물체내 중금속 함량 - 소나무 및 리기다소나무를 중심으로 -)

  • 민일식;송석환;김명희;장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1998
  • Heavy metal concentrations in rocks and soils from serpentinite(SP) and in plants (Pinus densiflora: PD and Pinus rigida: PR) were examined at Baekdong mine in Hongsung, Chungnam. Parent rocks were compared with amphibole schist(AS) and gneiss(GN) and plants divided the above grounds and roots were examined, respectively. In rocks, Ni, Cr, Co, Fe concentrations in SP were higher than those in AS and GN. The concentrations of top soils had the similar differences to their rocks; especially Ni, Cr, Co, Fe concentrations were the highest in SP, Zn and Sc concentrations, however, were the highest in AS. Average Ni, Cr, Co, Au, As, Sb, W concentrations of PD were the highest in SP and especially Ni, Cr, Co concentrations were accorded with changes of rocks and top soils. Zn and Sc concentrations in AS were higher and Fe and Mo concentrations in GN were higher than those in SP. Compared with two plants in the same serpentinite sites, most elements of PR were higher than those of PD. Therefore, these suggested PR absorbed much heavy metal than PD. Most element concentrations of roots in two plants and three rocks were higher than those of the above ground. Relative ratios (average plant concentration/soil concentration) of Ni, Cr, Co, Zn, Sc, Fe in AS and GN were higher than those of SP. Especially, relative ratios of most elements except Zn in GN were the highest.

  • PDF

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part II : 열영향부의 액화균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.46-55
    • /
    • 1997
  • This study has evaluated the liquation cracking behavior in the heat affected zone of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). 304 and 310S austenitic stainless steels were also included for comparison. In addition, the mechanism of liquation cracking in the HAZ was postulated based on the extensive microstructural examinations with SEM, EDAX and TEM. The liquation cracking resistance of Ni base alloys was found to be far inferior to that of austenitic stainless steels. The liquation cracking of Incoloy 825 and Inconel 718 was believed to be closely related with the Laves-austenite(Ti rich in 825 and Nb rich in 718) and MC-austenitic eutectic phases formed along the grain boundaries by constitutional liquation and incipient melting under rapid welding thermal contraction. Further, liquation cracking resistance of the HAZ was dependent not only upon the type and amount of low melting phases but also on the grain size.

  • PDF

A Study on the Oxide Scale of the Long Term Serviced 12%Cr Boiler Tube Steel (장기간 사용한 12%Cr강 보일러 튜브의 산화스케일에 관한 연구)

  • Kim, Beom-Soo;Min, Taek-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.281-287
    • /
    • 2012
  • The internal oxide scale of twelve superheater and reheater tubes were tested which were serviced for 30,000~120,000 hours in thermal power plants. The oxide scale was formed in three layers. The Cr-rich area was observed beneath the original metal surface. The hematite ($Fe_2O_3$) phase was formed on the outer surface. The intermediate layer was magnetite ($Fe_3O_4$). The thickness of Cr-rich layer was about half of the total scale. All layers grew during the operation hour of the plant. The thickness of thickest scale was 0.2mm in superheater tubes. This can increase the tube metal temperature about $7^{\circ}C$ more than initial state. $7^{\circ}C$ tube metal temperature can reduce tube life about 30%, but the boiler tube's design margin is big enough therefore it has been analyzed that it would not effect on the life span.

Analysis of the Effects of Ti, Si, and Mo on the Resistance to Corrosion and Oxidation of Fe-18Cr Stainless Steels by Response Surface Methodology (반응표면분석법을 활용한 Fe-18Cr 스테인리스강의 부식 및 산화 저항성에 미치는 Ti, Si, Mo의 영향 분석)

  • Jang, HeeJin;Yun, Kwi-Sub;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.741-748
    • /
    • 2010
  • We studied the corrosion and oxidation properties of Fe-18Cr-0.4Nb-(0.1~0.6)Ti-(1~3)Si-(0.5~2)Mo stainless steel. The resistance to general and pitting corrosion was evaluated and the results were analyzed by Response Surface Methodology (RSM) as a function of alloy composition. The effects of alloy composition and heat treatment on the oxidation resistance were also examined. Mo increased both general corrosion resistance and pitting corrosion resistance. Si improved the resistance of the alloys to pitting corrosion. Si was also beneficial for general corrosion resistance of the alloys containing Mo at more than 1 wt.%. However, Mo was detrimental when its content was lower. Effects of Ti on general corrosion properties appeared to be weak and a high concentration of Ti appeared to deteriorate pitting resistance. The thickness of the oxidation scale increased and adhesion of the scale worsened as the temperature increased from $800^{\circ}C$ to $900^{\circ}C$. Weight gain of the alloys due to oxidation at $900^{\circ}C$ clearly showed that the resistance to oxidation is improved by annealing at $860^{\circ}C$ and an increase of Si content.