• 제목/요약/키워드: Fe-Cr alloy

검색결과 352건 처리시간 0.023초

정밀주조법으로 제조된 Co계 초내열 합금의 미세구조 (Microstructure of Co-base superalloy prepared by a investment casting)

  • 이정일;이호준;조현수;팽종민;박종범;류정호
    • 한국결정성장학회지
    • /
    • 제27권6호
    • /
    • pp.313-318
    • /
    • 2017
  • 본 연구에서는 가스터빈용 Co계 합금인 ECY768 as-cast 합금 시편의 melt/mold 온도에 따른 결정구조 및 미세조직 및 변화를 고찰하였다. As-cast ECY768 샘플들은 전반적으로 amorphous 특성을 보여주고 있으며 기지인 Co상과 금속탄화물상으로 구성되어 있음을 확인하였으며, mold의 온도에 따른 XRD 패턴에서의 결정성 변화를 고찰하였다. 광학현미경(OM)을 이용하여 as-cast 샘플들의 결정립계에 석출물을 관찰하였다. 또한 FE-SEM에 의한 미세구조 분석시 Co기지상과 금속 탄화물의 석출물이 발견되는 영역이 관찰하였으며 EDS 분석에 의해 금속과 탄소의 화학양론이 확연히 다른 $M_{23}C_6$ 및 MC-type 조직으로 확인할 수 있었다. 여기서 $M_{23}C_6-type$의 탄화물은 Cr 원소를 주성분으로 하는 것을 확인할 수 있었으며, MC-type 탄화물은 Ta 원소가 주성분임을 확인할 수 있었다.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • 황창묵;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF