• Title/Summary/Keyword: Fe-25Cr Steel

Search Result 42, Processing Time 0.031 seconds

Corrosion of Fe-2.25%Cr-1.6%W Steel at 600 and 700℃ in N2/(0.5, 2.5)%H2S-mixed Gas

  • Lee, Dong Bok;Bak, Sang Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • ASTM T23 steel with a composition of Fe-2.25%Cr-1.6%W corroded at 600 and $700^{\circ}C$ for 5-70 h in $N_2$/(0.5, 2.5)%$H_2S$-mixed gas at 1 atm. It corroded rapidly, forming the outer FeS scale and the inner (FeS, $FeCr_2O_4$)-mixed scale. The ensuing outward diffusion of $Fe^{2+}$ ions during corrosion led to the protrusion of FeS platelets over the outer FeS scale. The formation of FeS at the surface facilitated the oxidation of Cr to $FeCr_2O_4$ in the inner scale. Since the nonprotective FeS scale existed over the whole scale, T23 steel displayed poor corrosion resistance in the $H_2S$-containing atmosphere.

Corrosion of Fe-Cr Steels at 600-800℃ in NaCl Salts

  • Lee, Dong Bok;Kim, Min Jung;Yadav, Poonam;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.354-359
    • /
    • 2018
  • NaCl-induced hot corrosion behavior of ASTM T22 (Fe-2.25Cr-1Mo), T91 (Fe-9Cr-1Mo), T92 (Fe-9Cr-1.8W-0.5Mo), 347HFG (Fe-18-Cr-11Ni), and 310H (Fe-25Cr-19Ni) steels was studied after spraying NaCl on the surface. During corrosion at $600-800^{\circ}C$ for 50-100 h, thick, non-adherent, fragile, somewhat porous oxide scales formed. All the alloys corroded fast with large weight gains owing to fast scaling and destruction of protective oxide scales. Corrosion rates increased progressively as the corrosion temperature and time increased. Corrosion resistance increased in the order of T22, T91, T92, 347HFG, and 310H, suggesting that the alloying elements of Cr, Ni, and W beneficially improved the corrosion resistance of steels. Basically, Fe oxidized to $Fe_2O_3$, and Cr oxidized to $Cr_2O_3$, some of which further reacted with FeO to form $FeCr_2O_4$ or with NiO to form $NiCr_2O_4$.

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

A Study on the Surface Characterization of Fe-17wt.%Cr Steel for Cast-bonding of Al and Stainless Steel (Al과 스텐레스강의 주조접합을 위한 STS430(Fe-17wt.%Cr)강의 표면처리 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.134-141
    • /
    • 2005
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Al/Fe-17wt%Cr steel(stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemically etched to have optimum pit size and density. The optimum conditions to generate best pit are as follows: Solution: 1 M $Fecl_{3}$+1 M Nacl, Addition: $CuCl_{2}+HCl$, Current density: 80 $mA/cm^{2}$, Total current: 400 $coulomb/cm^{2}$, AC frequency :60 Hz.

Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃ (650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part (산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성)

  • Kim, Young-Kyun;Park, Jong-Kwan;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

Fracture Behaviors of Oxide Scales on the Metallic Substrate and the Influence of Oxide Scales for the Strength of materials (산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향)

  • ;;T. Narita
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.187-190
    • /
    • 2003
  • An Fe-25Cr steel was oxidized in Ar at 973K with or without external stesses of 30~35Mpa. A 0.1 ${\mu}{\textrm}{m}$ thick Cr$_2$O$_3$scales was formed during pre-treatment in Ar. Cracking on the oxides scales commenced at the alloy grain boundary by the end of second creep stage, arrayed almost perpendicular to the direction of the tensile directions. On the contrary, a scale formed in $N_2$-0.1%SO$_2$shows poor adherence on the metal substrate. In this case, the strength of materials is much lower than in Ar

  • PDF

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

High Nitrogen Steel for Core of Over-head Transmission Line (가공송전선 코아용 고질소강 연구)

  • Kim, Bong-Seo;Yoo, Kyung-Jae;Kwon, Hae-Woong;Lee, Hee-Woong;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1555-1557
    • /
    • 1998
  • In order to investigate the core material for over-head transmission line with non-magnetic and high strength nitrogen steel, microstructure and several basic properties of Fe-Mn-Cr-Ni-N steel have been studied. It is necessary that core material have a $\gamma$ phase to have a non-magnetic characteristics. To acquire a $\gamma$ phase, Mn, Ni and C are added as a alloying element. It was found that Fe-25Mn-16Cr-1Ni-N alloy have a stable $\gamma$ phase. The precipitate from this alloy system was $(Cr, Fe)_7C_3$. High Mn and N steel satisfies Sievert's relation that solubility of nitrogen increases with the square root of partial pressure of gas in metal-gas system and the hardness have proportional relation with nitrogen concentration.

  • PDF

Fracture Behavior of Oxide Scales and Influence of Oxide Scales on the Strength of Materials (산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향)

  • ;;Narita Toshio
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • An Fe-25Cr steel was oxidized in Ar atmosphere at 973K with and without applying external stress of 30∼35 MPa. A 0.1$\mu\textrm{m}$ thick $Cr_2O_3$ scales formed during pre-treatment in Ar atmosphere. Initiation of cracking on the oxide scales took place at grain boundaries during the end of second creep stage, in which cracks were found nearly perpendicular to the tensile directions. On the contrary, a scale developed in $N_2$-0.1%$SO_2$ displaced a poor adherence on the metal substrate. In this sample, a fast grown of scales was observed during creep deformation, and the strength of materials was much lower than in Ar. The creep strain rate of $1.5{\times}10^{-7}/s$ and $5.8{\times}10^{-7}/s$ was determined in Ar and in $N_2$-0.1%$SO_2$ under 30MPa, respectively.