• Title/Summary/Keyword: Fe contamination

Search Result 232, Processing Time 0.02 seconds

Ecological Studies of Plants for Control of Environmental Pollution, III -The Studies on the Content and Contamination of Heavy Metals and Vegetation of Roadside- (환경오염 방지를 위한 식물의 생태학적 연구(III) -도로변 식생과 중금속 함량 및 오염에 관한 연구)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.158-162
    • /
    • 1974
  • Some ecological attributes of perennial plants and Pb contamination were analyzed for study plots near an entrance of Nevade Test Site at Mercury Valley, Nye County, Nevada. The surface of the desert pavement soil was composed of stones (1 to 4cm diameter). The underside of each stone was coated with coarse and fine sand (about 90%). The profiles of soil were constituted with the A-horizon and C-horizon only. The soil pH at the plots ranges from 7.6 to 8.5, C/N was 13 and cation exchange capacity showed 15me/100g. Nine species and 42 number of individuals were found in all plots. Franseria dumosa and Larrea divaricata were dominant species. The discrete clumps of vegetation were consisted of 9 species of common perennials and these were covered about 25% on desert pavement, on the other words, bare area without vegetation was about 75%. The size and spacing of the plants was irregular. Community coefficient as comparison between shrub species in these study area and those in near the low elevation desert indicated a low degree of similarity. Density, cover and productivity in the study plots as compared with those in the nearest study areas in Mercury Valley showed a higher value. The soils in the studied area involved high heavy metal contents in the plant tissue was higher than those of its soil. The leavds of Lycium andersonii tended to accumulate more Zn and Mo than those of the other species. Larrea divaricata leaves accumulated very high leaves of Fe and Ephedra nevadensis were generally high in Mn. Lead contamination was apparent in foliage of desert vegetation collected alongside the roadway, reflecting the variation in traffic volume. Lead contents greater than fifteen-fold of normal (low traffic) were found in plant foliage alongside the heavily traveled roadway. Lead content of old foliage by the heavily traveled roadway was as much as 129 ppm but that of new foliage 17 ppm only.

  • PDF

Heavy Metals in Sediments and Burrowing Bivalves (Sinonovacula constricta Lamarck) from Tidal Flats along the Saemankeum Area, Korea (새만금지역 갯벌 환경(패류, 저질)에서의 중금속 분포특성)

  • Hwang, Gab-Soo;Shin, Hyung-Seon;Kim, Kangjoo;Yeo, Sung-Koo;Park, Seongmin;Lim, Kyujae
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.341-354
    • /
    • 2002
  • Heavy metal concentration/distribution in sediments and bivalves from the tidal flats in Saemankeum coastal area, western Korea, were investigated, Among 6 sampling sites, S2, S5 and S6 showed the higher levels of Zn, Cr, Ni, Cu and Cd contamination and S1 did the higher level of Pb contamination than other sites, while S-4 showed the lowest levels of these metal contamination. Overally, the levels of Zn, Cu and Pb concentrations in Sinonovacula constricta were estimated to be relatively high. The shell lengths of the collected mussels were linearly related to their dry weights of the whole soft parts, but the mussels collected from S3 were in a poor nutrition, resulting in the distinctively high levels of metal concentrations in the body. It was shown that in S. constricta, Cr, Ni, Cu and Zn are distributed equally into the whole soft parts or a little more into the flesh, after absorption, while Fe, Cd, Pb and Mn are transferred more into the non-flesh parts than into the flesh parts. In S. constricta, the heavy metal concentrations in the flesh increase with those in the whole soft parts. The bioaccumulation factors(heavy metal concentration in S. constricta/heavy metal concentration in sediment) showed that, of the examined metals, Cd is the most cumulative in the body of S. constricta, followed by Zn and Cu, while Mn, Cr, Ni and Pb are not cumulative.

Evaluation of Heavy Metal Contamination in Intertidal Surface Sediments of Coastal Islands in the Western Part of Jeollanam Province Using Geochemical Assessment Techniques (지화학적 평가기법을 이용한 전남 서해 도서갯벌 퇴적물내 중금속 오염도 평가)

  • Hwang, Dong-Woon;Kim, Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.772-784
    • /
    • 2011
  • We measured grain size, organic matter, and metallic elements (Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As) in intertidal sediments collected from six islands in the western part of Jellanam Province in order to evaluate heavy metal contamination in the tidal flat sediments of coastal islands. The evaluation of metal contamination was carried out using geochemical assessment techniques such as sediment quality guidelines (SQGs), enrichment factor (EF), and geoaccumulation index ($I_{geo}$). Surface sediments were classified into four sedimentary facies: sand, gravelly muddy sand, slightly gravelly mud, and silt. The concentrations of heavy metals in intertidal sediments from Jaeun, Amtae, Biguem, and Docho islands showed good positive correlations with mean grain size and ignition loss, indicating that the concentrations of metallic elements in these sediments were dependent on grain size and the organic matter content. The concentrations of heavy metals in sediments from almost all of the stations were lower than two criterion values proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Based on the EF and $I_{geo}$ results, surface sediments were a little polluted for Cr and were moderately polluted for As. Our results suggest that more intensive studies are necessary in the future in order to determine the major source of As in intertidal sediment and to evaluate the As pollution level in macrobenthos.

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Geochemical Dispersion and Contamination Characteristics of Heavy Metals in Soils and Leaves of Ginkgo biloba in Seoul Area (서울지역 가로수 토양과 은행나무 잎 중의 중금속 원소들의 지구화학적 분산과 오염특성)

  • Choo Mi-Kyung;Kim Kyu-Han;Lee Jin-Soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.221-236
    • /
    • 2005
  • In order to investigate the contamination levels and dispersion patterns of heavy metals such as Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn by urbanization, soils beneath roadside-trees and leaves of Ginkgo biloba were collected from Seoul area during October to November in 2001. All tree leaves were grouped into washed and unwashed ones. The pH of most soil ranges from 6 to 9 indicating a weak acidic and alkaline. The element couples of Cd-Co, Cr-Ni and Zn-Cu-Pb have good correlation in soils, and contamination sources of Cd-Co, Cr-Ni and Zn-Cu-Pb could be similar. High correlation coefficients among Pb, Cu and Zn in G. biloba indicates that these elements show the similar behavior during the metabolism processes. From the results of pollution index calculation for soils, industrialized and heavy traffic area were severly polluted by heavy metals such as Cd, Cu, Pb and Zn. By the discriminant analysis, industrialized and heavy traffic areas are enriched in the order of Ni> Cr> Pb. Cadmium is useful to discriminate between industrialized and heavy traffic areas, Co and Pb are highly enhanced in heavy traffic area.

Appearance Contamination of EPDM Article from Water Solution (EPDM 소재의 수용액으로부터의 외관 오염)

  • Choi, Sung-Seen;Chung, Hye-Seung;Joo, Yong-Tae;Yang, Kyung-Mo;Lee, Seong-Hoon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.100-105
    • /
    • 2010
  • An EPDM article was aged in air, distilled water, tap water, NaCl/$CaCl_2$ solution, and $CaCl_2/FeCl_3$ solution for 7 days. The aging temperature was $90^{\circ}C$. The samples aged in air and distilled water did not appear the whitening, those aged in tap water, NaCl/$CaCl_2$ solution, and $CaCl_2/FeCl_3$ solution showed the whitening. Soluble organic materials were analyzed using GC/MS to identify the whitening materials, surface morphology of the aged sample surface was examined using image analyzer and SEM, and elemental analysis of the materials accumulated on the sample surface was performed using EDX. Principal reason to cause whitening might be formation of metal salt of fatty acid by reaction between metal cation and fatty acid.

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF

Assessment of Radionuclides(Co, Sr) Adsorption and Desorption Characteristics in Soil Using Modified Clay and Fish Bones (개질 점토 및 생선뼈를 이용한 토양 내 방사성 핵종(Co, Sr) 흡착 및 탈착 특성 평가)

  • Kang Kyungchan
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.58-70
    • /
    • 2023
  • The improper management of radioactive waste or accidents caused by natural disasters can result in the release of radioactive materials into the surrounding environment, potentially leading to soil and groundwater contamination by radionuclides. In this study, adsorption-desorption behaviors of the radionuclides (cobalt and strontium) in natural soil, montmorillonite, Mn-PILC, Fe-PILC, and fishbone were investigated. Several models were used to predict adsorption isotherms of radionuclides on various absorbents. Adsorption isotherms of cobalt and strontium in several adsorbents were examined at pH 5.5. The amount of sorbed cobalt and strontium were represented fishbone > natural soil > Mn-PILC > Fe-PILC > montmorillonite and natural soil > Mn-PILC > fishbone > Fe-PILC > montmorillonite, respectively. Adsorption datas were fitted with several models such as Freundlich, Langmuir, Sips, Redlich-Peterson, Khan, and Generalized model. The results of curve fitting showed R2> 0.98 in all of adsorption models, except Sr2+ adsorption onto montmorillonite. For modified clays (Mn-PILC, Fe-PILC), it is suggested that, unlike natural soils and fish bones, there are not only single adsorption mechanisms but also adsorption mechanisms based on chemical adsorption and surface charge. In the case of fish bones, due to the relatively higher adsorption capacity than modified clays and its characteristic of significant desorption, it is expected more suitable for the removal of radionuclides in aquatic environments than for the immobilization of radionuclides in soil.

Sequential Fractionation of Heavy metals from Mine Tailings and Two Series of Agricultural Soils (광미장과 두개의 농업토양통 토양으로 부터의 중금속의 연속 분획)

  • Chung, Doug-Young;Lee, Do-Kyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • In order to investigate the contamination characteristics of the heavy metals in the mine tailings of abandoned gold mine and its surrounding agricultural soils, a sequential extraction procedure of increasing reactivity in the dissolution processes of the heavy metals(Cd, Cu, and Pb) which were associated with solid and/or solution phase in soils was attempted to partition into six particulate fractions : exchangeable, bound to carbonate, bound to Fe-Mn oxides, bound to organic matter, residual, and soluble. Among indigenous heavy metals in the mine tailings, Pb was the most abundant and Cu and Cd were followed by. Fractionation result of Pb obtained from the triplicate samples of the mine tailings were in the order of Fe-Mn oxide> Carbonate> Residual> Organic> Exchangeable> Soluble, while Wolgok series were Exchangeable > Fe-Mn oxide > Carbonate> Organic> Residual> Soluable. However the other heavy metals studied were not followed this trend. The fractionation results of mine tailing and agricultural soils demonstrated that different geochemical fractions were operationally defined by an extraction sequence that generally followed the order of decreasing solubility. Therefore potential mobility and bioavailability of heavy metals as toxic pollution sources can be evaluated when studying the pollution levels of heavy metals in soils.

  • PDF

Effect of Contamination by the Abandoned Coal Mine Drainage on the Stream Water in Keumsan, Chungnam (금산(錦山) 폐탄광지역(廢炭鑛地域)의 오염(汚染)이 하천수(河川水)에 미치는 영향(影響))

  • Kim, Myung Hee;Min, Ell Sik;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.435-442
    • /
    • 1997
  • The research was carried out to investigate the contamination of stream water by the acid mine drainage originated from the abandoned coal mines and coal waste rock in Keumsan, Chungnam. The pH, sulfate and chemical compositions in the stream water were analyzed. At the polluted sites, the pH of stream water was the strong acid, ranging from 3.46 to 4.29. The pH shows negative correlations with sulfate, manganese, copper, zinc, iron and magnesium concentrations. Sulfate concentrations of the polluted stream water, 236.73-310.53mg/l, had 10 times more than those of the non-polluted stream water. The concentrations of heavy metals, Mn and Fe, in the polluted water were 0.56 - 0.83mg/l and 5.89 - 10.58mg/l, respectively. The Mn concentrations were 20 times higher than those of the non-polluted stream water. Compared with those in the non-polluted stream water, the Mg and Ca concentrations in the polluted stream water were high because of leaching from rock and soil to water by the acidifications. Calculated AMDI(Acid Mine Drainage Index) values are low in the polluted stream water, relative to those of the non-polluted water.

  • PDF